
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 1

Alert-driven Attack Graph Generation using
S-PDFA

Azqa Nadeem, Sicco Verwer, Stephen Moskal and Shanchieh Jay Yang

Abstract—Ideal cyber threat intelligence (CTI) includes insights into attacker strategies that are specific to a network under
observation. Such CTI currently requires extensive expert input for obtaining, assessing, and correlating system vulnerabilities into a
graphical representation, often referred to as an attack graph (AG). Instead of deriving AGs based on system vulnerabilities, this work
advocates the direct use of intrusion alerts. We propose SAGE, an explainable sequence learning pipeline that automatically
constructs AGs from intrusion alerts without a priori expert knowledge. SAGE exploits the temporal and probabilistic dependence
between alerts in a suffix-based probabilistic deterministic finite automaton (S-PDFA) — a model that brings infrequent severe alerts
into the spotlight and summarizes paths leading to them. Attack graphs are extracted from the model on a per-victim, per-objective
basis. SAGE is thoroughly evaluated on three open-source intrusion alert datasets collected through security testing competitions in
order to analyze distributed multi-stage attacks. SAGE compresses over 330k alerts into 93 AGs that show how specific attacks
transpired. The AGs are succinct, interpretable, and provide directly relevant insights into strategic differences and fingerprintable
paths. They even show that attackers tend to follow shorter paths after they have discovered a longer one in 84.5% of the cases.

Index Terms—Alert-driven attack graphs, Explainable machine learning, Suffix automaton model, Attacker strategy, Intrusion alerts.

F

1 INTRODUCTION

A LERT investigation is one of the main responsibili-
ties of security operations centers (SOC); and it is

largely used for reactive defense capabilities. However, alert
management can also be used to derive proactive cyber
threat intelligence (CTI), e.g., by deducing attacker strategies
specific to a network under observation. The biggest hurdle
to this aim is the large volume of alerts that SOCs receive on
a daily basis: alert fatigue is one of the most prevalent prob-
lems faced by analysts working in SOC environments [1].
A survey conducted during the RSA conference in 2018
revealed that security analysts receive more than a million
alerts each day, many of which they cannot even address the
same day [2]. Alert correlation reduces the volume of alerts
by grouping alerts from the same attack stage [3], [4], [5].
However, it does not provide a bigger picture of the attack,
and the subsequent analysis to obtain actionable insights
into attacker strategies is still manual and labor-intensive.

Attacker strategies are often represented via attack
graphs (AG), which are commonly used for visual analyt-
ics [6], [7], [8] and forensic analysis [9], [10]. Existing AG
generation approaches fall under the Topological Vulnera-
bility Analysis (TVA) [11] that requires extensive amount
of expert knowledge and published vulnerability reports
[12], [13]. As such, expert-driven AG generation is time-
consuming; and it is ineffective to constantly rely on vul-

• A. Nadeem and S. Verwer are with the Department of Intelligent Systems,
Delft University of Technology, 2628 XE Delft, Netherlands.
E-mail: azqa.nadeem@tudelft.nl, s.e.verwer@tudelft.nl.

• S. Moskal and S. J. Yang are with the Department of Computer Engi-
neering, Rochester Institute of Technology, Rochester, NY 14623, United
States.
E-mail: sfm5015@rit.edu, Jay.Yang@rit.edu.

Manuscript received December 1, 2020; revised May 1, 2021; accepted Septem-
ber 24, 2021.

nerability scanning – the delayed nature of vulnerability re-
porting leaves blind-spots in an organization’s security [14].
Additionally, shared threat intelligence reports are often not
directly relevant to one’s own network [15]. To the best of
our knowledge, it is still an open problem to construct attack
graphs that provide directly relevant intelligence regarding
attacker strategies without expert input.

In this paper, we formally define our proposed system,
SAGE (IntruSion alert-driven Attack Graph Extractor) [16].
SAGE generates AGs directly from intrusion alerts without
a priori vulnerability and network topology information. It
adopts an explainable sequence learning pipeline to exploit
the temporal and probabilistic dependence present between
intrusion alerts. SAGE can directly augment existing intru-
sion detection systems (IDS) for triaging large volumes of
alerts to produce only a handful of AGs. These alert-driven
AGs unlock a new means to derive intelligence regarding
attacker strategies without having to investigate thousands
of intrusion alerts. Fig. 1 shows the boxology diagram for
SAGE, according to the modular design patterns by van
Bekkum et al. [17].

A particular challenge for machine learning-enabled
attacker strategy identification is the scarcity of severe
alerts — the majority of alerts are associated to network
scans, which are not interesting for an analyst due to their
widespread use [18]. Therefore, frequency analysis methods
like frequent pattern mining and longest common subsequence
are inherently unsuitable, since they discard infrequent
behavior. Instead, we learn an interpretable suffix-based
probabilistic deterministic finite automaton (S-PDFA) using
the FlexFringe automaton learning framework [19]. We tune
the learning algorithm and transform the alert data such
that the resulting model accentuates infrequent severe alerts,
without discarding any low-severity alerts. The model sum-
marizes attack paths leading to severe attack stages. It can

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 2

Fig. 1: SAGE takes intrusion alerts as input and generates attack graphs. Intrusion alerts are transformed into episode
sequences (Section 4.1). An interpretable S-PDFA model is learned from those sequences (Section 4.2). The sequences are
replayed through the S-PDFA and transformed into targeted attack graphs (Section 4.3).

distinguish between alerts with the same signature but
different contexts, i.e., scanning at the start and scanning
midway through an attack are treated differently, since the
former indicates reconnaissance and the latter indicates at-
tack progression. Targeted attack graphs are extracted from
the S-PDFA on a per-victim, per-objective basis.

We demonstrate SAGE’s effectiveness on distributed
multi-stage attack scenarios, i.e., where multiple attack-
ers collaborate to compromise various targets progress-
ing through numerous attack stages. Discovering attacker
strategies in this setting is inherently difficult because host
information cannot be used to aggregate alerts from differ-
ent collaborating attacker(s). Security testing competitions
provide an ideal setting to study such attacks in a controlled
setting. To this end, we use three open-source datasets
collected through penetration testing competitions [20] and
blue team exercises [21] that have significantly different
statistical properties and target infrastructures.

On one of the datasets, SAGE compresses over 330k
alerts into 93 AGs in under a minute. Even with an imperfect
IDS, the AGs capture the strategies used by the participating
teams. They reveal that 84.5% of the time, attackers follow
a shorter path to re-exploit an objective, after they have al-
ready discovered a longer path. Moreover, the AGs provide
the visual means to compare attacker strategies. We show
how to use this comparison to find fingerprintable paths
and to rank various attackers based on the severity of their
actions. Finally, SAGE is agnostic to the specific inner work-
ings of an IDS, and can process any alert dataset as long as
it contains IP addresses, port-numbers, and a description of
the observed attack event. Our main contributions are:

1) We propose suffix-based probabilistic determinis-
tic finite automaton (S-PDFA), an interpretable se-
quence model that focuses on infrequent severe
alerts without discarding any low-severity alerts.
The model summarizes attack paths in the dataset.

2) We provide formal definitions for SAGE’s compo-
nents, including a thorough explainability analysis

of SAGE and the alert-driven AGs it generates.
3) We utilize three security testing competition

datasets to extensively evaluate SAGE. We show
it is generalizable and the AGs provide actionable
intelligence regarding attacker strategies, strategic
differences, and fingerprintable paths.

Section 2 describes two practical use-cases for SAGE. We
provide a brief overview of the related works in Section
3. The architecture of SAGE, along with its explainability
aspect is illustrated in Section 4. Sections 5 and 6 describe the
experimental setup and a thorough analysis of alert-driven
attack graphs. We discuss the limitations of SAGE in Section
7 and conclude in Section 8.

2 USE-CASES FOR SAGE
SAGE uses intrusion alerts to generate attack graphs (AG)
that succinctly display all the paths that reach a given
objective, making it an interpretable visual analytics tool.
Below, we highlight use-cases for two types of users.

SOC analysts. The primary use-case explored in this pa-
per is about enabling SOC analysts extract threat intelligence
about attacker strategies from previously observed mali-
cious activities. As such, SAGE augments existing SIEMs
and IDSs by triaging the attack scenarios of interest, e.g.,
for specific assets in a network. The selected alert-driven
AGs can be analyzed and attacker strategies can be derived
for corroborating specific evidences. Sections 6.1.1 and 6.1.2
discuss concrete examples of interpreting and comparing
attacker strategies. The occurrence of certain paths in an AG
can serve as fingerprints (see Section 6.1.3). Additionally,
attacker hosts can be ranked based on the severity of alerts
they raise (see Section 6.1.4).

Red teams. As an adversarial use-case, SAGE can act as
a monitoring intermediary during red team training. After
a training session, the teams review alert-driven AGs for
gaining intelligence, such as (i) identifying the shortest path
to an objective that was discovered by a team member, or

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 3

(ii) showing redundant paths, for instance, due by lack of
communication between the team members. Enumerating
all paths toward an objective can help the teams develop
creative strategies (example in Section 6.3). Teams can use
such feedback to further improve their performance.

3 RELATED WORK

Cyber Threat Intelligence. CTI refers to evidence-based
situational awareness, which typically involves insights into
the tactics, techniques, and strategies employed by cyber
adversaries [22]. Intrusion detection systems (IDS) generate
thousands of alerts on a daily-basis. Alert triaging tech-
niques have been proposed to model attack scenarios, such
as alert correlation [3], [4], [5], [23], [24], [25], [26], [27]
and alert prioritization [28], [29]. Alert correlation groups
alerts from the same attack stage, while alert prioritiza-
tion highlights and summarizes alerts for speeding up the
response time. Although these methods drastically reduce
alert volume, they do not provide a bigger picture of the
specific strategies employed by the attackers.

Attack graph generation. SOC analysts rely on labor-
intensive processes for obtaining intelligence regarding at-
tacker strategies. Attack graphs (AG) provide a concise way
of displaying these strategies [8], [14]. Specifically in the
network security domain, Kaynar et al. [30] have proposed a
taxonomy of the existing AG generation approaches. Many
of them fall under the topological vulnerability analysis
(TVA) [11], which relies heavily on a priori knowledge
about the topology of, and vulnerabilities in a network,
making them unsuitable for zero-day attacks. MulVAL [12]
and NetSPA [13] are popular tools in this category. Next
to this, there are many approaches to improve pre-existing
AGs, e.g., works focusing on AG completeness [31], [32], AG
complexity reduction [33], [34], and what-if analyses [6], [7].

Learning from observables. Cyber data from prior se-
curity incidents can be utilized to gain insights into attacker
behavior, e.g., using log data [35], [36], [37], sensor data [38],
and network traffic [39]. Process mining and Markov models
are particularly well-suited for sequential learning prob-
lems. Process mining (PM) has been used to provide a visual
summary of the intrusion alert datasets [40], [41]. While
great for modeling concurrent events, PM models are dense
and cannot be used to model context: they use alert signa-
tures as identifiers, which makes it impossible to distinguish
between alerts with different contexts but identical signa-
tures. Markov models, however, have no such limitation.
Moskal et al. [42] use suffix-based Markov chains to repre-
sent attacker strategies as sequences of hyper-alerts. They
measure attack sequence similarity using Jensen-Shannon
divergence. In this paper, we propose SAGE, which is a
purely alert-driven approach for generating attack graphs.
We borrow initial ideas from Moskal et al. [42]. We leverage
the temporal and probabilistic dependence between alerts
to generate targeted attack graphs without a priori expert
knowledge. The probabilistic deterministic finite automaton
(S-PDFA) that we use has more expressive power than
Markov chains, while being easier to interpret.

Explainability. SAGE provides an explainable and auto-
mated alternative to the manual process of finding attacker
strategies. It is important to note that while explainability is

widely considered for classification decisions, SAGE is not
a classifier, and the explainability lies in the attack graphs
instead. Because the explainability aspect of SAGE is an
important design consideration, we do not consider inher-
ently black-box models, such as neural networks [43]. While
attention mechanisms [44] and linear proxy models [45]
help explain the decisions of such black-box models, they
offer post-hoc interpretability on a per-input basis. Instead,
SAGE relies on the interpretable nature of its entire pipeline.
As opposed to black-box models that often make use of
randomization and soft decision boundaries to avoid local
minima and over-fitting, SAGE relies on statistical tests,
making every step in its pipeline discrete and deterministic. In
addition to model interpretability, this provides design- and al-
gorithmic transparency. We make conscious design decisions
to enhance the interpretability of the S-PDFA, and the way
the attack graphs are constructed makes them explainable.
These notions are described by Roscher et al. [46], who
list the three components of explainable machine learning
as: transparency, interpretability, and explainability. In short,
interpretability is about the model, while explainability is
about the output of a learning pipeline. Model interpretability
allows a user to: 1) examine (visualize) a learned model, 2)
reason about the discovered patterns, 3) draw inferences,
and 4) combine it with subsequent analysis methods. A
model is design transparent if design decisions can be mo-
tivated from the application domain, and it is algorithmically
transparent if it allows a user to reverse the learning pipeline
to obtain the input data that led to modeling decisions. We
show examples of all of these in Sections 4.4 and 6.1.

4 SAGE: INTRUSION ALERT-DRIVEN ATTACK
GRAPH EXTRACTOR

SAGE (IntruSion alert-driven Attack Graph Extractor) is a
purely alert-driven approach for attack graph generation.
SAGE has 3 core components, as shown in Fig. 1. It takes
raw intrusion alerts as input, aggregates them into se-
quences of attacker actions. An automaton model is learned
using these sequences, summarizing attacker strategies. Fi-
nally, attack graphs are extracted from the model on a
per-victim, per-objective basis. SAGE is released as open-
source1. It is implemented in Python and released in a
docker container for cross-platform support.

In this section, we use the Collegiate Penetration Test-
ing Competition dataset from 2018 [47], i.e., CPTC-2018,
as a running example. CPTC-2018 contains intrusion alerts
generated by six teams (T1, T2, T5, T7, T8, T9) attempting
to compromise the infrastructure of a fictitious automotive
company (See Section 5 for details). Table 1 shows how the
volume of alerts is reduced by each component of SAGE.

4.1 From intrusion alerts to episode sequences

As a first step, we arrange intrusion alerts in sequences that
characterize an attacker strategy. Raw intrusion alerts are
noisy and often multiple alerts are triggered by a single
attacker action. Thus, the main goal of this step is to clean
and aggregate alerts into sequences of attacker actions.

1. https://github.com/tudelft-cda-lab/SAGE

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 4

TABLE 1: For each CPTC-2018 team, the number of raw
alerts and how they are compressed in each phase of SAGE.

Alerts
(raw)

Alerts
(filtered) Episodes ES/

ESQ
ESS/

Traces AGs

T1 81,373 26,651 655 103 108 53
T2 42,474 4,922 609 86 92 7
T5 52,550 11,918 622 69 74 51
T7 47,101 8,517 576 63 73 23
T8 55,170 9,037 439 67 79 33
T9 51,602 10,081 1,042 69 110 30

4.1.1 Alert pre-processing

An intrusion alert is composed of attributes such as, source
and destination IP addresses, a timestamp, a descriptive
signature, and some protocol specific fields. SAGE utilizes
fields that are available for all alerts, regardless of the attack
vector. The input to SAGE is a set of observable intrusion
alerts $. Let > ∈ $ be an intrusion alert, with attributes
> = 〈B�%, 3�%, B%>AC, 3%>AC, CB, B86=〉. Here B�%, B%>AC are
the attacker’s IP and port number and 3�%, 3%>AC are the
victim’s IP and port number. CB is the time elapsed since the
first alert in seconds. B86= is the alert signature attribute.

Features are extracted as follows: (i) The destination
port number is used to identify the likely targeted ser-
vice C(4AE = (4AE(3%>AC) from open source IANA map-
ping [48]. (ii) Intrusion alerts typically contain many re-
peated alerts occurring within a short time interval. Such
high-frequency noise creates undesired artifacts in model
learning. We filter all alerts with identical attributes that
occur within a C-second interval, keeping only the first
occurrence, i.e., we create a set $� ⊆ $ such that for
each observation 〈B�%, 3�%, B%>AC, 3%>AC, CB, B86=〉 ∈ $� , there
exists no 〈B�%, 3�%, B%>AC, 3%>AC, CB′, B86=〉 ∈ $ with CB ≠ CB′,
and CB − C ≤ CB′ < CB. In this paper, we use C = 1.0 B42

following [5], [42]. (iii) Instead of using the default alert
signature attribute, we augment alerts with attack stages
proposed by the Action-Intent Framework (AIF) of Moskal
et al. [49] for categorizing them into their respective attack
phases. The AIF provides a better representation of the
attack stages. Based on the MITRE ATT&CK framework
[50], it was proposed specifically to map action-types to
dynamic observables, such as intrusion alerts. The AIF
provides a mapping <20C = "0?(B86=) from alert signatures
to attack stages (see appendix). (iv) Finally, the filtered set $̃
of intrusion alerts >̃ is a 5-tuple >̃ = 〈B�%, 3�%, C(4AE, CB, <20C〉
for each > ∈ $� . Fig. 2 shows the distribution of the attack
stages across all six teams in the filtered CPTC-2018 dataset.

4.1.2 Gathering alerts into Alert Sequences (AS)

There are three main methods for converting discrete ob-
servables into sequences: aggregation based on (i) source IP:
showing the attacker’s perspective, (ii) destination IP: show-
ing the victim’s perspective, and (iii) (source IP, destination
IP) pair: showing individual interactions between unique
attackers and victims. We select (iii) because the sequences
clearly show the interaction an attacker has with a victim,
without other attackers polluting the sequence, which helps
to preserve the temporal dependence between alerts. Thus
an alert sequence is a windowed list of alerts between a
unique (attacker, victim) pair.

Fig. 2: The distribution of alerts per attack stage for the
CPTC-2018 teams. Scanning-alerts are significantly more
frequent than exploitation-alerts.

Definition 1. An Alert Sequence (AS) is a windowed list
of alerts occurring within a time window F. Let � be
the set of unique attacker hosts, + be the set of unique
victim hosts, and � be the set of unique attack stages
(<20C), then �(0E,2 = ¥>0E,21 . . . ¥>0E,2= , where (0, E) ∈ �×+ ,
2 ∈ �. Here, ¥>0E,2

8
= {>̂0E,21 . . . >̂

0E,2
l } is a multi-set of

alerts for 1 ≤ 8 ≤ =. For a window F and given >̃ 9 =

〈0, E, C(4AE, CB, 2〉 ∈ $̃, we define >̂0E,2
9

= 〈C(4AE, CB, 2〉 such
that ΠCB (>̂0E,21) = 8 · F, ΠCB (>̂0E,2l) − ΠCB (>̂0E,21) ≤ F, and
ΠCB (>̂0E,29

) ≤ ΠCB (>̂0E,29+1), for 1 ≤ 9 ≤ l.

Here, Π- (>̂0E,29
) is the projection of the - attribute of

>̂
0E,2
9

. Furthermore, we use 5 ′(8) to denote the first deriva-
tive of the number of alerts per-window over time, i.e.,
5 ′(8) = Δ | ¥>0E,2

8
|

Δ8
(will be used to define B;>?4 in Algorithm

1). In contrast to other works that use B�% and 3�% as
explicit features [24], [25], [26], we only use them to con-
struct sequences. This allows identification of related alerts
originating from different sources.

4.1.3 Aggregating AS into Episode Sequences (ES)
Intrusion alerts are aggregated into a group, such that they
likely belong to the same attacker action. In the literature,
such an aggregation is called an attack episode [42]. We
assume that these episodes closely characterize attacker
actions. Generally, low-severity alerts are so frequent that
they subsume high-severity alerts. To overcome this, we
treat each attack stage separately. Intuitively, we test the
frequency of all alerts in a windowed sequence: when the
frequency starts to increase (an up), we consider it the start
of an episode; when the frequency is continuously decreas-
ing and reaches a global minimum (a down), we consider it
the end of that episode (see example in Fig. 3). Episodes
are the building block of SAGE. All extracted episodes

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 5

Algorithm 1 Convert alert sequence into episode sequence
Input: Alert sequence: 0B
Output: Episode sequence: 4B

1: def CONVERT_TO_ES(0B)
2: 4B = []
3: for (<20CG , 0BG) in SPLIT_ON_MCAT(0B) do
4: C8<43_0B = LEN(BD1) for all BD1 in 0BG
5: B;>?4 = 5 ′(G) for all G in C8<43_0B
6: D?B = GET_POSITIVE_SLOPES(B;>?4)
7: 3>F=B = GET_NEGATIVE_SLOPES(B;>?4)
8: 4?8B>34B = GET_EPISODES(D?B, 3>F=B)
9: 4B.append((<20CG , 4?)) for all 4? in 4?8B>34B

10: end for
11: 4B = SORT_BY_EPISODE_START(4B)
12: return 4B

13: def GET_EPISODES(D?B, 3>F=B)
14: 4?8B>34B = []
15: for 8 in [0,...,LEN(D?B)−1] do
16: if IS_DOWN_BETWEEN_UPS(8, 8 + 1, 3>F=B) then
17: 3>F= = GET_LAST_DOWN(8, 8 + 1, 3>F=B)
18: 4?8B>34B.append((D?B[8], 3>F=))
19: end if
20: end for
21: return 4?8B>34B

Fig. 3: Bursts of alerts from the same attack stage are
aggregated into episodes. Here, an attack sequence related
to vulnerability scanning is aggregated into two episodes.

are collected and time-sorted in an episode sequence (see
Algorithm 1).

Definition 2. An Episode Sequence (ES) for an attacker 0 and
victim E is a list of episodes, �(0E = 4?80E1 . . . 4?80E< . An
episode is a 4-tuple 4?80E

9
= 〈BC0E , 4C0E , <20C0E , <(4AE0E 〉

for 1 ≤ 9 ≤ <, where BC0E , 4C0E ∈ R denote the start
and end time of an episode, <20C0E is the attack stage of
an episode, and <(4AE0E is the most frequently targeted
service in an episode.

In essence, ES’s are aggregated sequences of alerts (see Fig.
4). We construct �(0E from a windowed alert sequence of
attack stage 2, i.e., �(0E,2 = ¥>0E,21 . . . ¥>0E,2= . For each 1 ≤ B ≤
4 ≤ =, the start time is BC0E = min(ΠCB (¥>0E,2B)) if 5 ′(B) = 0
and 5 ′(B + 1) > 0; the end time is 4C0E = max(ΠCB (¥>0E,24))
if 5 ′(4) = 0 and 5 ′(4 − 1) < 0; the attack stage is <20C0E =
2, and the most frequently targeted service is <(4AE0E =

arg max<B4A E |{ΠC(4A E (¥>
0E,2
8
) = <B4AE : B ≤ 8 ≤ 4}|.

Fig. 4: Episode sequences from CPTC-2018: Each sequence
is a list of tuples 〈BC, 4C, <20C, <(4AE〉, ordered in time.

4.2 Suffix-based Probabilistic Deterministic Finite Au-
tomaton (S-PDFA)
The insight provided by episode sequences is limited be-
cause they fail to capture the temporal dependence between
episodes. We use a suffix-based probabilistic determinis-
tic finite automaton (S-PDFA) with Markovian properties
to summarize attacker strategies. It clusters similar attack
paths based on temporal and behavioral similarity. It also
brings infrequent severe episodes into the spotlight. This
last requirement is problematic because most clustering
approaches ignore infrequent patterns.

In contrast to regular Markov chains, an automaton
model is able to distinguish between episodes of the same
<20C with different contexts, e.g., a scanning event happen-
ing at the start, and that happening mid-way through an at-
tack, when attackers have already gained some knowledge,
are treated differently. This makes them popular for learning
the behavior of software systems, such as communication
protocols and even malware, see e.g., [51], [52], [53], [54].
Definition 3. A Suffix-based Probabilistic Deterministic Fi-

nite Automaton (S-PDFA) is a 5-tuple � = 〈&,Σ,Δ, %, @0〉
defining the machine structure: & is a finite set of states;
Σ is a finite alphabet of symbols; Δ is a finite set of transi-
tions; % : Δ→ [0, 1] is the transition probability function,
and @0 ∈ & is the final state (due to suffix model). A
transition X ∈ Δ in an S-PDFA is a tuple 〈@, @′, 0〉, where
@, @′ ∈ & are the target and source states, and 0 ∈ Σ is
a symbol. % is a function such that

∑
@,0 %(〈@, @′, 0〉) = 1.

Additionally, Δ is such that for every @ ∈ & and 0 ∈ Σ,
there exists at most one 〈@, @′, 0〉 ∈ Δ, making the model
(suffix) deterministic.

A suffix automaton contains a single final state and
does not model starting states. Instead of generating a
sequence from the start, it generates sequences from the
end. It still represents a probability distribution over Σ=

for all 1 ≤ =. The probability of a sequence B = 01 . . . 0=
is computed along the reverse path @00=@10=−1@2 . . . 01@=,
with 〈@8 , @8+1, 0=−8〉 ∈ Δ, called the S-PDFA run. The sequence
probability is then %(B) = ∏

0≤8<= %(〈@8 , @8+1, 0=−8〉), where∏
denotes a product. For any trace, there exists a unique

run due to suffix determinism. The Flexfringe automaton
learning framework [19] can be used to learn suffix models.
Flexfringe implements several automaton learning heuris-
tics within the well-known state merging algorithms, such
as state merging [55] and DFASAT [56] (see [57] for details).

4.2.1 Input trace construction
Whereas an episode sequence may contain multiple at-
tempts to exploit a victim host, an S-PDFA models each

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 6

Fig. 5: A suffix tree for three traces. For any vertex, the
previous vertex happens chronologically in the future.

attempt separately to find partial overlap in attacker strate-
gies. To this end, an ES is partitioned into episode subse-
quences (ESS) when a low-severity episode follows a high-
severity one. (4E4A8CH(4?8) is a user-defined function, deter-
mined by the acceptable risk of a SOC. By default, scanning
has low severity, exploitation has high severity and the rest
of the enabler-actions have medium severity (see appendix).
Definition 4. Given an �(0E = 4?80E1 . . . 4?80E< ,

define a break-point as an index 8 such that
(4E4A8CH(4?80E

8+1) < (4E4A8CH(4?80E
8
). An Episode

Subsequence �((0E = 4?80EB . . . 4?80E
B′ is a contiguous

subsequence of �(0E without break-points, i.e.,
�(0E = 4?80E1 . . . 4?80EB . . . 4?80E

B′ . . . 4?8
0E
< . Every �(0E

is broken into its break-point-free subsequences
�(0E = �((0E,1 . . . �((0E,: .

The S-PDFA learns on sequences of univariate symbols,
called traces. One trace is constructed per ESS. The symbols
signify the most apparent intent of episodes, defined by
〈<20C,)ℎ4<4(<(4AE)〉.)ℎ4<4() groups services based on
their functionality (see appendix). This gives 536 traces,
which is small but sufficient to learn insightful S-PDFAs.

4.2.2 S-PDFA for SAGE
We opt for a suffix model because we are interested in
predicting which episodes eventually lead to high-severity
attack stages. These attack stages are infrequent, and always
lie at the end of our input traces. Therefore, a suffix-
automaton model is used to predict the past, instead of
predicting the future. Each state in an S-PDFA model can
be thought of as a milestone achieved by an attacker.

Although Flexfringe uses prefix-based models, we obtain
a suffix-based one by simply reversing the input traces.
We choose the Flexfringe implementation of the Alergia
algorithm [58] because of limited data. For reversed traces,
the algorithm constructs a suffix tree (see Fig. 5 for an
example). The algorithm starts at the root of the suffix tree
and iteratively tries to merge states based on the chosen
merge criteria. The parameter selection for model learning is
guided by the properties of input traces and some trial-and-
error of visualizing the model until satisfied. Fortunately,
the algorithm learns these models in less than 0.5 seconds.
Fig. 6 shows the S-PDFA for CPTC-2018, learned from all
536 traces to enable behavior comparison.

Fig. 6: The S-PDFA model for CPTC-2018. The states are
colored according to the severity of the incoming symbol’s
attack stage: red is high, blue is medium, white is low.

We use three important settings for learning an inter-
pretable S-PDFA: (i) We limit which states are used to
compute statistics. The learning algorithm merges two states
if it does not find sufficient evidence that the states are
different. A lower bound on the data required for this
evidence is controlled by the BC0C4_2>D=C and BH<1>;_2>D=C
parameters. Intuitively, it is better to use only frequently-
occurring states and transitions in the statistical tests, but
the default values of 50 and 25 are much too large for the
limited amount of high-severity episodes in the dataset.
We set both to 5, implying that a state in the suffix tree
that occurs only 5 times in total can provide sufficient
evidence to prevent a merge from happening. (ii) We use the
Markovian property, which dictates that for any given states
@1 and @2, the previous transition labels have to be identical,
i.e., 〈@′1, @1, 0〉 and 〈@′2, @2, 0〉. It enforces that the incoming
transition label for states is unique, which makes the model

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 7

easier to interpret. (iii) We utilize sink states. The core al-
gorithm continues merging until all states have either been
merged or added to the model. For infrequent states, there is
typically insufficient evidence to prevent a merge and they
can, therefore, be merged with any of the states added in the
previous iterations. The B8=:_2>D=C parameter avoids this
by disallowing merges that occur B8=:_2>D=C times or less,
which we set to 5. The states that occur less than B8=:_2>D=C
times are not displayed in the learned model, which makes
it easier to interpret. That said, high-severity sink states
are interesting from behavioral perspective since they show
the rare exploitative actions. We perform post-processing to
include such high-severity sink states in the learned model.
This process salvages 13% of the sinks, which otherwise
would not have appeared in the attack graphs.

The chosen state merging algorithm ensures that only
the states with similar pasts are merged. The Markovian
property, in addition, forces that the immediate-future is
identical. Thus, the occurrence of identical episodes leading
to different states highlights semantic differences, e.g., data
exfiltration|http may either be reached by service discovery
→ code execution, or by vulnerability discovery→ privilege
escalation. Separate states will be learned for these two
types of data exfiltration, capturing their context.

4.2.3 S-PDFA model quality evaluation
Evaluating model quality is a hard problem in grammatical
inference [57], [59]. Typically, it is measured using a trade-
off between model size and fit. We are mainly interested
in the insight provided by the S-PDFA. The initial suffix
tree shows the data as is, which provides insight but does
not show similarities between the different traces. The S-
PDFA shows such similarities by performing merges. Every
such merge generalizes from the training data, and assigns
probability mass to unseen test data. We use Perplexity to
quantify model quality. It measures the prediction power of
a model, and has been used in grammatical inference com-
petitions [60], [61]. It is defined as 2−

1
#

∑#
8=1 ;>62% (G8) , where #

is the number of traces, and %(G8) returns the probability of
the G8 trace. The lower the value, the better the model fits with the
data. We compute perplexity for both, training and test data,
using an 80-20 split, where the former shows how well the
model fits the training data, and the latter shows how well
it captures patterns in the overall data.

Perplexity is computed for four suffix model-variants: (i)
suffix tree: plain representation of traces in a tree format,
(ii) Markov chain: standard statistical model, (iii) default S-
PDFA: an S-PDFA with default settings, (iv) SAGE S-PDFA:
an S-PDFA learned using the settings in this paper. Table 2
shows the perplexity for each variant. It shows that a suffix
tree provides the best fit with the training data, as expected.
The SAGE S-PDFA is about twice as "perplexed". It is hard
to quantify how good this is exactly, but it is better than
what the Markov chain and the default S-PDFA achieve. On
the test data, SAGE S-PDFA gives the best perplexity value,
demonstrating that it accurately captures many patterns
present in the data.

4.3 Alert-driven Attack Graphs
The S-PDFA assigns the same context to episodes that are
temporally and probabilistically similar, where context is

TABLE 2: Model quality evaluation (Perplexity) of four suf-
fix variants on the CPTC-2018 traces. Suffix tree and SAGE
S-PDFA are the best on training and test data, respectively.

Suffix
tree

Markov
chain

Default
S-PDFA

SAGE
S-PDFA

Training set 1265.4∗ 13659.6 15136.5 2397.8
Holdout test set 13020.7 11617.8 11241.5 9884.6∗

denoted by state identifiers. We first augment episode se-
quences with their context, and then transform them into
attack graphs (AG) on a per-victim, per-objective basis.

4.3.1 Adding context to Episode Sequences
The states of an S-PDFA provide contextual meaning to the
episodes’ attack stages. Existing work by Lin et al. [62] have
utilized this context to encode traces into state sequences
for clustering similar car-following behaviors. We follow the
same principle, and convert the episode sequences (ES) into
state sequences (ESQ). We run each episode subsequence
01 . . . 0= through the model, which produces @= . . . @0. A
state subsequence is an episode subsequence augmented
with state identifiers, i.e., @00=@10=−1@2 . . . 01@=.

Definition 5. A State Sequence (ESQ) for an episode se-
quence �(0E = �((0E,1 . . . �((0E,: is the concatenated
sequence �(&0E = B@1B@2 . . . B@: , where B@8 is the state
subsequence for �((0E,8 for all 1 ≤ 8 ≤ : .

4.3.2 Attack graph construction
The state sequences are transformed into alert-driven attack
graphs based on the specified objective and the victim host.
An objective >1 9 ∈ $1 9 is a 3 tuple 〈<20C, <(4AE, @〉 associ-
ated to a high-severity attack stage, represented by the last
six categories of the Action-Intent mapping (see appendix).
They are considered as end-goals since (a) they are typically
the last actions to appear in ESS, and (b) it is unlikely that
medium-severity actions, e.g., privilege escalation, are done
to no end. To support episode prioritization, an analyst can
choose the granularity of objectives, i.e., only attack stage
〈<20C〉, attack stage and targeted service 〈<20C, <(4AE〉 or
the full tuple 〈<20C, <(4AE, @〉. By default, SAGE generates
AGs on a per-victim, per-objective basis, i.e., for an objective
>1 9 ∈ $1 9 and a victim E ∈ + , only the state sequences that
contain >1 9 are considered, i.e., {?0Cℎ ∈ �(&0E |>1 9 ∈ ?0Cℎ}.
In theory, this produces |+ | · |$1 9 | attack graphs, many
of which contain shared paths. We aggregate AGs of a
victim E and objectives >1 9 = 〈<20C, <(4AE, @〉 and >1 9 ′ =
〈<20C, <(4AE, @′〉, by adding a new root node 〈<20C, <(4AE〉.
This is because paths leading to >1 9 and >1 9 ′ tend to have
shared vertices. On the CPTC-2018 dataset, for 19 victims
and 70 objectives, this step results in 93 AGs instead of 1,330
(a reduction of 93%). Each AG compresses over 500 alerts in
less than 25 vertices, on average.

In summary, the root of an attack graph is 〈<20C, <(4AE〉.
Other vertices are the unique items in ?0Cℎ. Edges are
obtained by running a sliding window of length 2 over
?0Cℎ. The edge label shows the start-time attribute of each
episode, showing attack progression. In a state sequence,
if an objective is achieved multiple times, each attempt is
shown as an individual path in the graph. Also, to make

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 8

Fig. 7: An alert-driven attack graph: Vertices: Labels show
〈attack stage, targeted service, state identifier〉. Low-severity
episodes are oval, medium-severity are boxes, high-severity
are hexagons. The first episode in a ?0Cℎ is yellow, the objec-
tive is red. Sinks are dotted. Edges: Labels show seconds since
the first alert. Colors show team affiliation: T1 (Maroon), T2
(Orange), T5 (Green), T7 (Blue), T8 (Magenta), T9 (Purple).

the strategy comparison easier, all teams that achieve an
objective are shown in one graph, distinguishable by their
edge color. Fig. 7 shows an alert-driven attack graph’s
anatomy.

4.3.3 Attack graph complexity analysis
We evaluate the complexity of the AGs using the model
simplicity metric proposed by De Alvarenga et al. [40] for
process mining, i.e., (8<?;828CH(��) = |+ |

|� | , where |+ | and
|� | are the number of vertices and edges, respectively. The
average simplicity of the CPTC-2018 AGs is 0.81, with 21.7
vertices on average (min: 3, max: 49) and 38.7 edges on
average (min: 2, max: 174). Although the average number of
vertices is higher than [40], these AGs show the paths for all
teams, making strategy comparison much easier. Moreover,
Nadeem et al. [63] show that the S-PDFA AGs are more suc-
cinct than suffix tree- and Markov chain-based approaches.

4.4 Explainability analysis of SAGE
We make conscious design decisions to make the entire
SAGE pipeline explainable. This is so that security analysts
can review the attack graphs (AG), reason about attacker
strategies, and discover new knowledge [64].

Fig. 7 shows the composition of an alert-driven AG. An
AG for a given (objective, victim) is a compressed represen-
tation of its relevant intrusion alerts. A vertex represents
an aggregation of alerts, i.e., an episode (defined by the
severity of its attack stage, its context as determined by
the S-PDFA, and the most frequently-targeted service within
the alerts). Some episodes may have the same shape, attack
stage, and targeted service, but different contexts, i.e., state
identifiers. This happens when these episodes are observed

TABLE 3: Experimental dataset summary(before filtering).

Dataset/Properties CPTC-2018 CPTC-2017 CCDC-2018
alerts 330,270 43,611 1,052,281
teams 6 9 Unknown
IPs 42 494 2138
services 160 168 2050
Duration (hrs) 9 11 25
Attacker hosts known? Yes No No
Victim hosts known? Yes No No

Dataset type Penetration
testing

Penetration
testing

Blue
teaming

in sequences with different futures and pasts. An AG may
also have multiple red vertices if the S-PDFA identifies dif-
ferent ways of obtaining the same objective, which happens
when the paths leading up to it are significantly different. A
path in an AG represents a sequence of episodes that leads
to an objective. Two paths overlap iff the S-PDFA has suf-
ficient evidence that they are similar, i.e., the episodes have
identical futures or similar pasts. In addition, we remove
the influence of (a) other actions in a path by constructing a
sequence with only the alerts between a specific (attacker,
victim), and (b) other attack attempts by modeling each one
as a separate path. A path can be traced starting from a
yellow vertex, and following the time progression of the
edge labels, ending in one of the red vertices. This makes
each AG design- and algorithmically transparent, interpretable,
and scientifically explainable.

The S-PDFA is an intermediate step responsible for
modeling context. We specifically learn a suffix model to
highlight the infrequent severe episodes. The Markovian
property, together with sinks, makes the model components
interpretable. The deterministic nature of the model makes it
algorithmically transparent. The parameter settings are guided
by the input data, making the model design transparent.

5 DATASET AND EXPERIMENTAL SETUP

Dataset. Security testing competitions provide an ideal set-
ting for distributed multi-stage attacks in a controlled envi-
ronment. In this paper, we use three open-source intrusion
alert datasets: two datasets from the Collegiate Penetration
Testing Competition (CPTC) [65] for showing SAGE’s ef-
ficacy, and one dataset from the Collegiate Cyber Defense
Competition (CCDC) [66] for showing SAGE’s generaliz-
ability. A summary of the datasets is given in Table 3.

The alert datasets are generated by different student
teams who are tasked to compromise a common fictitious
network. The CPTC-2017 dataset contains alerts by nine
teams (T2 to T10) targeting an electronic election infras-
tructure, while the CPTC-2018 dataset contains alerts by
six teams (T1, T2, T5, T7, T8, T9) targeting an automotive
company. Naturally, some vulnerabilities are unique to the
network, while the others are typical of any misconfigured
web sever. Each team has access to fixed-IP machines that
they can use, either in collaboration, or in isolation to
achieve their objectives. The infrastructure is monitored by a
Suricata IDS [67], which records alerts on a per-team basis.
Beyond the attackers’ IP information, no other ground truth
is available regarding the attack progression and attacker
strategies. This imitates the real-world scenario where SOC

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 9

analysts i) determine how an attack happened, and ii)
compare attacker strategies for fingerprintable behaviors.

Experiments. We perform three set of experiments:

1) Strategy explanation. We analyze attack graphs
generated from one infrastructure, i.e., CPTC-2018,
and demonstrate SAGE’s explainability aspect.

2) Model comparison. We perform a comparison be-
tween the CPTC-2017 and CPTC-2018 S-PDFA mod-
els to highlight infrastructure-related differences
captured by the learning algorithm.

3) Replication case study. We analyze attack graphs
generated from the CCDC-2018 dataset — it con-
tains alerts from a blue team exercise, where the
organizers serve as the red team. Other than a
network topology diagram (which seems like a web
shop), no other ground truth is available.

Parameters. In this paper, we set C = 1.0 seconds to
filter repeated alerts [5], [42]. For window length F, we
experiment with F = {60, 150, 300, 600} seconds, and choose
F = 150 as a reasonable value. Smaller window sizes
produce longer alert sequences, which may cut the same
behavior across multiple episodes. As such, F should be
tuned according to the trade-off between analysis resolution
and the number of alerts available per sequence. For model
learning, BC0C4_2>D=C, BH<1>;_2>D=C, and B8=:_2>D=C are set
to 5. All experiments are run in a Jupyter notebook executed
on Intel Xeon W-2123 quad-core processor and 32 GB RAM.

6 RESULTS AND DISCUSSION

Alert-driven attack graphs (AG) are aggregated representa-
tions of intrusion alerts, reflecting the actual pathways taken
by the attacker teams. The AGs are succinct, interpretable,
and generalizable.

6.1 Explaining attacker strategies in CPTC-2018

In this experiment, we analyze the AGs generated from
CPTC-2018. The S-PDFA finds a total of 70 contextual objec-
tives that are achieved by targeting 19 victim hosts. 330,270
alerts are represented by 93 AGs, where each AG shows how
the attack actually transpired. The end-to-end execution
time is 1.65 minutes, where 50% of this time is spent loading
the intrusion alerts. Below, we demonstrate how SAGE
enables visual analytics for attack path interpretation, and
highlights strategic differences for intelligence collection.

6.1.1 Comparing individual attack paths
(1) Alert-driven attack graphs provide insights into the
paths explored by attackers. Fig. 8 shows the strategies of
three teams (the absence of other teams indicates that they
were unable to achieve this objective). This graph com-
presses 300 alerts into 25 vertices, enabling a SOC analyst
to follow the attack progression.
(2) Fig. 8 shows that T1, T5, and T8 exfiltrate data from
10.0.0.20 using a remote access service. The teams self-
reported that they had found a chatting application on this
host that contained credentials, which they exfiltrate using
a combination of privilege escalation and arbitrary code
execution. The AG concretely shows how this was done.

Fig. 8: Attack graph of data exfiltration over remoteware-cl.
Three attacker teams successfully exploit it: Teams 1 and 5
exploit it twice, and each subsequent attempt is shorter than
the first. The S-PDFA identifies three ways of exploiting the
objective based on the actions that lead up to it.

T5 finds two distinct paths to complete this objective: first at
around the 1.4-hour mark of the competition, and then later
at around the 4.5-hour mark. T1 also finds two paths, but
significantly later in the competition. The S-PDFA identifies
three distinct exfiltration states because of significant differ-
ences in the paths that reach these states. Clearly, the states
〈data_exfiltration, remoteware-cl, 17〉 and 〈...,
116〉 are reached later in the competition with fewer steps,
implicitly capturing attackers’ increasing experience.
(3) Interestingly, an AG of data manipulation (Fig. 9) re-
sults in a partial sub-graph of the AG from Fig. 8, due to
overlap in paths that attain both objectives. It shows three
variants of data manipulation, of which two are also present
in the exfiltration graph, i.e., 〈data_manipulation,
remoteware-cl, 95〉 and 〈..., 288〉. T5 finds one ad-
ditional path to reach 〈..., 18〉 right after it has reached
〈data_exfiltration, remoteware-cl, 17〉 from the
previous AG. These type of insights provide actionable
intelligence to disrupt the cyber kill-chain [68].

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 10

Fig. 9: An attack graph of data manipulation is a partial
sub-graph of Fig. 8 because of overlapping attack paths.

6.1.2 Explaining strategic differences across AGs
(1) In addition to comparing attack paths, SOC analysts
can also compare entire AGs for a broader view of the
network, e.g., the AGs of victims 10.0.1.40 and 10.0.1.41
for data exfiltration over http are identical, both in terms
of the teams that exploit it and the timestamps of their
actions (see Fig. 10). According to the network topology,
these two hosts handle authentication in the production
network. The identical AGs indicate that both, T5 and T8
conduct a scripted attack on these hosts.
(2) Fig. 11 shows T5, T7, and T8 conducting resource hijack-
ing over two hosts (.40, .41) using http, resulting in highly
similar AGs. T5 has an identical strategy for both hosts. T7
does scans before manipulating accounts and conducting a
network DoS over .41, while later they only perform a scan
and a network DoS over .40. Similarly, T8 does a privilege
escalation and code execution after network DoS over .41,
while they later only do a network DoS over .40 to achieve
their objective. These differences show that attackers tend
to follow shorter paths after having successfully exploited a
longer path. Out of all the attack paths discovered in CPTC-
2018, 84.5% subsequent paths are shorter than an earlier
attempt, for a given objective.

6.1.3 Discovering fingerprintable paths
After analyzing the AGs, we observe that different teams
often reach different objectives, and when they do reach

(a) Victim: 10.0.1.40 (b) Victim: 10.0.1.41

Fig. 10: Identical and simultaneous attacks targeting multi-
ple victim hosts result in identical attack graphs.

the same objective, their paths are very different. Moreover,
when a team reaches an objective multiple times, their paths
are highly similar. Thus, the uniqueness of the paths can be
used by SOC analysts as fingerprints to single-out attacker
teams. A fingerprint is a uniquely identifiable sequence of
episodes, i.e., ?0Cℎ, that leads to a certain objective. It is
entirely possible that other paths (or sub-paths) leading to
common objectives are also unique, but we take a conserva-
tive approach and say that an objective is fingerprintable if
only a single team reaches it. Also, an objective can have
more than one fingerprint if a team finds multiple unique
ways to reach it. Table 4 shows the number of unique paths
each team discovers during CPTC-2018. 17 objectives are
fingerprintable, with a total of 29 unique fingerprints. We
found 9 fingerprints for two objectives reached by T1; 10
fingerprints for four objectives reached by T5; 7 fingerprints
for five objectives reached by T7; and 3 fingerprints for three
objectives reached by T9. We found no dedicated finger-
printable objectives for T2 and T8. Also, since a fingerprint
is a sequence of episodes, longer fingerprints provide more
evidence for identifying an attacker. The fingerprints we
discover are composed of 15.8 episodes, on average, which
provides solid evidence to uniquely identify a team.

6.1.4 Ranking attacker performance

Each vertex in an alert-driven AG signifies a new milestone
or objective achieved by an attacker. We argue that the
fraction of unique milestones discovered by an attacker
provides a metric for their performance, which can be used

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 11

(a) Victim: 10.0.1.40 (b) Victim: 10.0.1.41

Fig. 11: Similar attacks targeting multiple victim hosts result
in overlapping attack graphs.

by SOC analysts and red teams to rank interesting attacker
hosts. A medium-severity episode serves as a stepping-stone
towards a high-severity episode. Hence, we propose that
high-severity vertices hold twice the weight of medium-
severity vertices, i.e., (2∗ℎ86ℎ)+(1∗<438D<)3 .

Table 5 shows the evaluation of CPTC-2018 teams based
on all 93 AGs, ranked according to their performance. It
shows, for each team, the number of active attacker hosts,
and the unique milestones they discover. T5 is the most
high-profile team, even though only two team members
were responsible for discovering all the high-severity ver-
tices. T1 comes in second, solely because they discover
the highest number of medium-severity vertices. Finally, T2
discovers the least number of severe vertices. These results
are also corroborated by Table 4, which shows T2 being
unsuccessful in discovering many of the objectives.

6.2 CPTC-2017 vs. CPTC-2018 S-PDFA comparison

In this experiment, we analyze the extent to which an
S-PDFA model summarizes attacker strategies, including
infrastructure-related nuances, present in an alert dataset.
We learn two S-PDFA models, one for CPTC-2018 (Fig. 6)
and the other for CPTC-2017 (see appendix) using the same
method and parameter settings. Both models summarize
the various paths taken by the teams to reach high-severity
states. Several thousands of alerts are modeled by less than
75 states. The 2017 model is larger than the 2018 model,
with significantly more transitions. This is because the 2017
dataset has more traces, and there is more variability per-
trace, i.e., the 2017 teams exhibit more diverse sub-behaviors
than the 2018 teams.

Table 6 shows an exhaustive comparison between the
two models in terms of the services used to carry out
the objectives. It shows the number of unique objectives
exploited by the teams via a particular service. This includes

TABLE 4: Number of unique paths discovered by the CPTC-
2018 teams, per objective. Fingerprintable objectives are
highlighted (and the number of fingerprints is shown as x∗).

Service ↓ Unique paths discovered Finger-
print?T1 T2 T5 T7 T8 T9

Data Delivery
http 8 3 2 5 5

commplex-main 1∗ 3
cslistener 1 1
wap-wsp 1 1

remoteware-cl 1∗ 3
us-cli 1 1

unassigned 1∗ 3

Data Exfiltration
http 13 8 3 12 6

commplex-main 3∗ 3
cslistener 1∗ 3
wap-wsp 1∗ 3

remoteware-cl 2 2 1
us-cli 1 2 1

etlservicemsgr 2∗ 3
unassigned 2 7 1 6 1 7

Data Manipulation
http 14 7 3 8 6

commplex-main 1∗ 3
cslistener 1∗ 3
wap-wsp 1 1

remoteware-cl 1 2 1
us-cli 1 1 1

etlservicemgr 2∗ 3
unassigned 1∗ 3

Resource Hijacking
http 5 6 9 10 5

commplex-main 1∗ 3
cslistener 1∗ 3
wap-wsp 1 1

remoteware-cl 2 1
us-cli 1 1

etlservicemgr 2∗ 3
unassigned 1∗ 3

Network DoS
http 6 7 7 8 14
ssdp 8∗ 3

Data Destruction
us-cli 1∗ 3

TABLE 5: CPTC-2018 team ranking based on the fraction of
unique severe vertices discovered. It also shows the number
of attacker hosts responsible for discovering those vertices.

Teams # Active
hosts

Vertices Weighted average
percentageHigh-sev

(out of 70)
Medium-sev
(out of 148)

T5 2/5 28 (40%) 40 (27%) 35.67
T1 5/6 18 (26%) 62 (42%) 31.33
T9 5/5 23 (33%) 36 (24%) 30.0
T7 6/6 22 (31%) 26 (18%) 26.67
T8 6/7 15 (21%) 32 (22%) 21.33
T2 3/6 3 (4%) 8 (5%) 4.33

the different ways of reaching the same objective, as iden-
tified by the S-PDFA model. The most striking difference
between the models is that there are, on average, more paths
leading to severe states in the 2017 model than in the 2018
one. This means that a control could be more easily placed
in the 2018 network, making it impossible for attackers

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 12

TABLE 6: S-PDFA differences between CPTC-2017 and
CPTC-2018: the number of unique 〈high-severity attack
stage, targeted service〉 modeled.

Service ↓ S-PDFA
version U

ni
qu

e
ob

je
ct

iv
es

N
et

w
or

k_
D

oS

R
es

ou
rc

e
H

ij
ac

ki
ng

D
at

a
M

an
ip

ul
at

io
n

D
at

a
Ex

fil
tr

at
io

n

D
at

a
D

el
iv

er
y

D
at

a
D

es
tr

uc
ti

on

http(s) CPTC-2017 10 3 3 3
CPTC-2018 18 3 3 3 3 3

wireless CPTC-2017 3 3 3
CPTC-2018 6 3 3 3 3

remoteAccess CPTC-2017 8 3 3 3
CPTC-2018 9 3 3 3 3 3

surveillance CPTC-2017 7 3 3
CPTC-2018 9 3 3 3 3

broadcast CPTC-2017 8 3
CPTC-2018 6 3 3 3 3 3

hostingServer CPTC-2017 0 n/a
CPTC-2018 9 3 3 3 3

email CPTC-2017 1 3
CPTC-2018 0 n/a

authentication CPTC-2017 2 3 3
CPTC-2018 0 n/a

dataSharing CPTC-2017 2 3
CPTC-2018 0 n/a

nameserver CPTC-2017 1 3
CPTC-2018 0 n/a

browser CPTC-2017 2 3 3
CPTC-2018 0 n/a

clocksync CPTC-2017 2 3
CPTC-2018 0 n/a

storage CPTC-2017 3 3 3
CPTC-2018 0 n/a

unassigned CPTC-2017 8 3 3
CPTC-2018 7 3 3 3 3

to complete certain objectives. This is important because
the 2018 teams exploit each service for completing more
objectives, on average. However, the same does not hold for
the 2017 model as it has additional pathways for attackers
to evade controls.

Table 6 shows that the teams in the election scenario
(2017) exfiltrate data using a specific type of browser, while
this service is never even scanned in the automotive scenario
(2018). They also conduct DoS attacks using the network
time protocol (clocksync), and use services associated to
authentication and storage that are never used in the au-
tomotive scenario. On the other hand, teams conduct priv-
ilege escalation on a web hosting service in the automotive
scenario, but never in the election scenario. Furthermore,
while both team-sets scan and elevate privileges related
to email, only the teams in the election scenario manage
to exploit it for exfiltrating data. The unassigned service
category is particularly intriguing because it refers to high
port numbers being targeted. SOC analysts for both the
networks should analyze whether these open ports indicate
a misconfiguration in their networks.

6.3 Case study: Applying SAGE to CCDC-2018

The Collegiate Cyber Defense Competition (CCDC) dataset
is given as input to SAGE to verify whether it provides the

Fig. 12: Attack graph of data exfiltration over smtp for
CCDC-2018. The same attacker host makes 13 attempts.
Paths starting from severe attack stages are possible because
the attack graphs show part of a full attack campaign.

same interpretability and succinctness on a dataset that is
not related to penetration testing (see appendix for the re-
sulting S-PDFA). From 1,052,281 alerts, SAGE produces 139
AGs. The fact that we do not have any information about the
attacker/victim hosts and the underlying infrastructure re-
inforces that SAGE is generalizable, and is agnostic to host,
dataset, and infrastructure properties. The cases discussed
in this section verify that the alert-driven AGs require no
expert knowledge to be insightful.

Case 1 - Path enumeration. The AG in Fig. 12 shows
two possible variants of data exfiltration over SMTP (email
service), which can be achieved using the following paths:

1) RPE, ACE, NetDoS, VulnDisc, RPE, ACE, Exfil
2) NetDoS, VulnDisc, RPE, ACE, Exfil
3) VulnDisc, RPE, ACE, NetDoS, Exfil
4) VulnDisc, NetDoS, Exfil
5) VulnDisc, ACE, Exfil
6) VulnDisc, RPE, ACE, Exfil

where RPE is root privilege escalation; ACE is arbitrary code
execution; VulnDisc is vulnerability discovery; Exfil is data
exfiltration, and NetDoS is network DoS. Explicitly enumer-
ating attack paths in this way can help red teams come up
with creative strategies. The first two paths are especially
interesting because they start with a severe attack stage.
Since these alert-driven AGs show a segment of an on-going
campaign, starting from a severe attack stage indicates that
the attackers already had intelligence from elsewhere before
targeting this machine. Such paths are not intuitive when
constructing expert-driven AGs.

Case 2 - Shortest path. Fig. 13 shows the AG for
performing Network DoS using NTP. It shows two possible
variants, starting from six different vertices. Various services
are targeted along the way, including http and microsoft-
ds (data sharing protocol). The different attacker hosts are
highlighted by different edge colors. This AG shows that it
is possible to obtain this objective with just two actions, i.e.,
data exfiltration and network DoS. This happens at the 4-
hour mark. About 30 minutes later, root privilege escalation

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 13

Fig. 13: Attack graph of network DoS over ntp for CCDC-
2018. There are six possible starting actions and two possible
ways to reach the objective.

is done leading to arbitrary code execution and Network
DoS. This is a counter-example where a subsequent path
is longer than the first, even though only a single IP is in-
volved. SOC analysts can further investigate whether these
two attempts are indeed made by the same attacker, or some
behavioral artifact is at play.

Case 3 - An extra attempt. Fig. 14 shows various ways
to conduct data exfiltration over https for victims 10.47.3.142
and 10.47.3.1. Both AGs are nearly identical, with one addi-
tional exfiltration attempt in the second AG towards the end
of the competition, made by a new attacker. SOC analysts
can investigate why only one of the two machines were
targeted by this new attacker.

6.4 Practical implications for CTI: A discussion

CTI platforms convert cyber data into actionable intelli-
gence. Intrusion alerts play a critical role in this process,
and automated attacker strategy derivation is a major chal-
lenge. Existing tools that display attacker strategies via
attack graphs (AG) require network scans and vulnerability
information, which are often time-consuming and outdated.

SAGE generates purely alert-driven attack graphs that
provide quick insight into attacker strategies, without expert
input. SAGE has an explainable architecture (Fig. 1), and
can directly augment existing intrusion detection systems.
It is released in a docker container for cross-platform sup-
port. SAGE facilities attacker strategy analysis via advanced
visualizations. The attack graphs are a compressed repre-
sentation of numerous alerts. Even though SAGE does not
discard any alert, the targeted nature of the attack graphs
allow analysts to review large quantities of alerts without
being overwhelmed.

The analysis presented in this paper merely scratches
the surface of the intelligence that can be acquired from
these alert-driven AGs. They show clear attack progression
and allow strategy comparison. Fingerprintable paths can
be recorded for attacker re-identification. They also show
that attackers will often follow shorter paths to re-exploit an
objective, after they have already discovered a longer one.

We have rigorously evaluated SAGE with diverse
datasets and against alternative modeling approaches. We
show that the AGs indeed model the teams’ self-reported
claims. As demonstrated in Section 6.3, SAGE is agnostic
to network, host, and alert properties: with no ground truth

(a) Victim: 10.47.3.142

(b) Victim: 10.47.3.1

Fig. 14: Highly similar attack graphs of two victims from
CCDC-2018. The graphs are identical, except for an addi-
tional attack attempt by a new attacker in the second graph.

about any aspect of the dataset, SAGE produces succinct and
interpretable attack graphs, capable of actionable insights.

As a potential use-case, the attack graphs can also be
used to evaluate IDS rules. The quality of alert-driven AGs
is directly dependent on the quality of the IDS rules. Thus,
if an attacker exploits the system, and that path is missing
from the AGs, it is an indication of missing or faulty rules.

7 LIMITATIONS AND FUTURE WORK

Learning from infrequent sequences is a hard problem.
A side-effect of including high-severity sinks in the state
sequences is that the corresponding AG might show dis-
tinct objective-types for similar sequences. Although this
happens rarely, handling this problem is left as future work.
Secondly, only the state sequences that reach an objective
are part of its corresponding AG. It is possible that the
attackers divide their tasks such that the full attack path
is visible across multiple sequences. The AS construction
resolution needs to be changed in order to handle this sce-
nario. Thirdly, the S-PDFA is sensitive to small perturbations
in the sequences at test-time. To build resilience, perturbed

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 14

traces can be added to the training dataset at learning time.
Note that oversampling will alter the true data distribution,
which is why we do not opt for this solution. Lastly, we
do not yet have a metric to measure model interpretability.
Metrics like AIC, BIC, and Perplexity produce arbitrary
values for models learned on different parameters, making
the comparison meaningless.

Future work will focus on: (a) evaluating the adversarial
robustness of SAGE; (b) deploying SAGE during a security
competition to measure its effectiveness; and (c) building
alert-driven AGs on the fly to monitor evolving threats.

8 CONCLUSION

Intrusion alerts play a critical role in extracting intelligence
about attacker strategies, which is mostly a labor-intensive
and expert knowledge-driven process. To the best of our
knowledge, SAGE is the first tool that generates purely
alert-driven attack graphs (AG), without a priori expert
knowledge. We elaborate upon SAGE’s sequence learning
pipeline, which is fully transparent, interpretable and ex-
plainable. As a core building block, SAGE utilizes a suffix-
based probabilistic deterministic finite automaton (S-PDFA)
— a model that leverages the temporal and probabilistic
dependence between alerts. The S-PDFA brings infrequent
severe alerts into the spotlight without discarding any low-
severity alerts. Targeted attack graphs are then extracted on
a per-victim, per-objective basis. Using several use-cases, we
demonstrate the practical utility of SAGE’s AGs.

Our extensive experiments show that the AGs provide
a clear picture of the attack progression, and capture the
strategies of the participating teams. Specifically for CPTC-
2018, SAGE compresses over 330k alerts in 93 AGs in
under a minute. These AGs can be used for both, forensic
analysis of the attacks, and intelligence collection: (i) They
show exactly how specific attacks transpired and reveal that
attackers follow shorter paths to re-exploit objectives 84.5%
of the time; (ii) They discover 29 uniquely identifiable attack
paths, composed of 15.8 episodes on average; (iii) They rank
attackers based on the severity of their actions, showing that
Team 5 visits the highest, while Team 2 visits the lowest
number of severe vertices. SAGE is agnostic to host and
network properties: SAGE is capable of producing insightful
attack graphs even when no ground truth about attackers
and the target network is available. SAGE is released in a
docker container for cross-platform support.

9 ACKNOWLEDGMENTS

We thank Profs. Bill Stackpole and Daryl Johnson for their
guidance, and the reviewers for their constructive feedback
that has tremendously improved this manuscript. This effort
is partially supported by United States NSF Award 1742789
and RIT Global Cybersecurity Institute.

REFERENCES

[1] W. U. Hassan, S. Guo, D. Li, Z. Chen, K. Jee, Z. Li, and A. Bates,
“Nodoze: Combatting threat alert fatigue with automated prove-
nance triage,” in NDSS, 2019.

[2] T. Casey, “Survey: 27 percent of it professionals receive more than
1 million security alerts daily,” 2018, accessed: 08-Jul-2021. [On-
line]. Available: https://www.imperva.com/blog/27-percent-of-
it-professionals-receive-more-than-1-million-security-alerts-daily

[3] R. Sadoddin and A. Ghorbani, “Alert correlation survey: frame-
work and techniques,” in PST, 2006.

[4] S. Salah, G. Maciá-Fernández, and J. E. DíAz-Verdejo, “A model-
based survey of alert correlation techniques,” Computer Networks,
2013.

[5] F. M. Alserhani, “Alert correlation and aggregation techniques for
reduction of security alerts and detection of multistage attack,”
IJASCSE, 2016.

[6] L. Williams, R. Lippmann, and K. Ingols, “Garnet: A graphical
attack graph and reachability network evaluation tool,” in VizSec.
Springer, 2008.

[7] M. Chu, K. Ingols, R. Lippmann, S. Webster, and S. Boyer, “Vi-
sualizing attack graphs, reachability, and trust relationships with
navigator,” in VizSec, 2010.

[8] M. Angelini, N. Prigent, and G. Santucci, “Percival: proactive and
reactive attack and response assessment for cyber incidents using
visual analytics,” in VizSec. IEEE, 2015.

[9] S. Roschke, F. Cheng, and C. Meinel, “A new alert correlation
algorithm based on attack graph,” in CISIS. Springer, 2011.

[10] C. Liu, A. Singhal, and D. Wijesekera, “Using attack graphs in
forensic examinations,” in ARES. IEEE, 2012.

[11] S. Noel, M. Elder, S. Jajodia, P. Kalapa, S. O’Hare, and K. Prole,
“Advances in topological vulnerability analysis,” in CATCH.
IEEE, 2009.

[12] X. Ou, S. Govindavajhala, and A. W. Appel, “Mulval: A logic-
based network security analyzer.” in USENIX Security Symposium.
Baltimore, MD, 2005.

[13] M. L. Artz, “Netspa: A network security planning architecture,”
Ph.D. dissertation, Massachusetts Institute of Technology, 2002.

[14] S. Jha, O. Sheyner, and J. Wing, “Two formal analyses of attack
graphs,” in CSFW. IEEE, 2002.

[15] C. Sillaber, C. Sauerwein, A. Mussmann, and R. Breu, “Data qual-
ity challenges and future research directions in threat intelligence
sharing practice,” in WISCS, 2016.

[16] A. Nadeem, S. Verwer, and S. J. Yang, “Sage: Intrusion alert-driven
attack graph extractor,” in VizSec. IEEE, 2021.

[17] M. van Bekkum, M. de Boer, F. van Harmelen, A. Meyer-Vitali,
and A. t. Teije, “Modular design patterns for hybrid learning and
reasoning systems: a taxonomy, patterns and use cases,” arXiv
preprint arXiv:2102.11965, 2021.

[18] F. Valeur, G. Vigna, C. Kruegel, and R. A. Kemmerer, “Compre-
hensive approach to intrusion detection alert correlation,” TDSC,
2004.

[19] S. Verwer and C. A. Hammerschmidt, “Flexfringe: a passive
automaton learning package,” in ICSME. IEEE, 2017.

[20] RIT, 2021, accessed: 08-Jul-2021. [Online]. Available:
https://globalcptc.org/

[21] WRCCDC, 2021, accessed: 08-Jul-2021. [Online]. Available:
http://www.nationalccdc.org/

[22] D. Shackleford, “Who’s using cyberthreat intelligence and how?”
SANS Institute. Retrieved January, 2015.

[23] P. Ning, Y. Cui, and D. S. Reeves, “Constructing attack scenarios
through correlation of intrusion alerts,” in CCS, 2002.

[24] X. Qin and W. Lee, “Discovering novel attack strategies from
infosec alerts,” in ESORICS. Springer, 2004.

[25] B. Zhu and A. A. Ghorbani, “Alert correlation for extracting attack
strategies,” IJ Network Security, 2006.

[26] C.-H. Wang and Y.-C. Chiou, “Alert correlation system with au-
tomatic extraction of attack strategies by using dynamic feature
weights,” IJCCE, 2016.

[27] S. Haas and M. Fischer, “Gac: graph-based alert correlation for the
detection of distributed multi-step attacks,” in SAC, 2018.

[28] R. Shittu, A. Healing, R. Ghanea-Hercock, R. Bloomfield, and
M. Rajarajan, “Intrusion alert prioritisation and attack detection
using post-correlation analysis,” Computers & Security, 2015.

[29] S. McElwee, J. Heaton, J. Fraley, and J. Cannady, “Deep learning
for prioritizing and responding to intrusion detection alerts,” in
MILCOM. IEEE, 2017.

[30] K. Kaynar, “A taxonomy for attack graph generation and usage in
network security,” JISA, 2016.

[31] P. Ning, D. Xu, C. G. Healey, and R. S. Amant, “Building attack
scenarios through integration of complementary alert correlation
method.” in NDSS, 2004.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 15

[32] H. Hu, J. Liu, Y. Zhang, Y. Liu, X. Xu, and J. Huang, “Attack
scenario reconstruction approach using attack graph and alert data
mining,” JISA, 2020.

[33] J. Homer, A. Varikuti, X. Ou, and M. A. McQueen, “Improving
attack graph visualization through data reduction and attack
grouping,” in VizSec. Springer, 2008.

[34] K. Ingols, M. Chu, R. Lippmann, S. Webster, and S. Boyer, “Mod-
eling modern network attacks and countermeasures using attack
graphs,” in ACSAC. IEEE, 2009.

[35] J. Navarro, V. Legrand, S. Lagraa, J. François, A. Lahmadi,
G. De Santis, O. Festor, N. Lammari, F. Hamdi, A. Deruyver
et al., “Huma: A multi-layer framework for threat analysis in a
heterogeneous log environment,” in FPS. Springer, 2017.

[36] J. Navarro, V. Legrand, A. Deruyver, and P. Parrend, “Omma:
open architecture for operator-guided monitoring of multi-step
attacks,” EURASIP Journal on Information Security, 2018.

[37] M. Landauer, F. Skopik, M. Wurzenberger, W. Hotwagner, and
A. Rauber, “A framework for cyber threat intelligence extraction
from raw log data,” in Big Data. IEEE, 2019.

[38] Q. Lin, S. Adepu, S. Verwer, and A. Mathur, “Tabor: A graphical
model-based approach for anomaly detection in industrial control
systems,” in Asia-CCS, 2018.

[39] A. Nadeem, C. Hammerschmidt, C. H. Gañán, and S. Verwer,
“Beyond labeling: Using clustering to build network behavioral
profiles of malware families,” Malware Analysis Using Artificial
Intelligence and Deep Learning, 2021.

[40] S. C. De Alvarenga, S. Barbon Jr, R. S. Miani, M. Cukier, and
B. B. Zarpelão, “Process mining and hierarchical clustering to help
intrusion alert visualization,” Computers & Security, 2018.

[41] Y. Chen, Z. Liu, Y. Liu, and C. Dong, “Distributed attack modeling
approach based on process mining and graph segmentation,”
Entropy, 2020.

[42] S. Moskal, S. J. Yang, and M. E. Kuhl, “Extracting and evaluating
similar and unique cyber attack strategies from intrusion alerts,”
in ISI. IEEE, 2018.

[43] J. Liu, B. Liu, R. Zhang, and C. Wang, “Multi-step attack scenarios
mining based on neural network and bayesian network attack
graph,” in ICAIS. Springer, 2019.

[44] J. B. Lee, R. A. Rossi, S. Kim, N. K. Ahmed, and E. Koh, “Attention
models in graphs: A survey,” TKDD, 2019.

[45] M. T. Ribeiro, S. Singh, and C. Guestrin, “" why should i trust
you?" explaining the predictions of any classifier,” in SIGKDD,
2016.

[46] R. Roscher, B. Bohn, M. F. Duarte, and J. Garcke, “Explainable
machine learning for scientific insights and discoveries,” IEEE
Access, 2020.

[47] N. Munaiah, A. Rahman, J. Pelletier, L. Williams, and A. Meneely,
“Characterizing attacker behavior in a cybersecurity penetration
testing competition,” in ESEM. IEEE, 2019.

[48] IANA, 2021, accessed: 08-Jul-2021. [Online]. Avail-
able: https://www.iana.org/assignments/service-names-port-
numbers/service-names-port-numbers.xhtml

[49] S. Moskal and S. J. Yang, “Framework to describe intentions of a
cyber attack action,” arXiv preprint arXiv:2002.07838, 2020.

[50] B. E. Strom, A. Applebaum, D. P. Miller, K. C. Nickels, A. G.
Pennington, and C. B. Thomas, “Mitre att&ck: Design and phi-
losophy,” Technical report, 2018.

[51] W. Cui, J. Kannan, and H. J. Wang, “Discoverer: Automatic proto-
col reverse engineering from network traces.” in USENIX Security
Symposium, 2007.

[52] J. De Ruiter and E. Poll, “Protocol state fuzzing of {TLS} imple-
mentations,” in USENIX Security Symposium, 2015.

[53] C. Y. Cho, D. Babi ć, E. C. R. Shin, and D. Song, “Inference
and analysis of formal models of botnet command and control
protocols,” in CCS, 2010.

[54] P. M. Comparetti, G. Wondracek, C. Kruegel, and E. Kirda,
“Prospex: Protocol specification extraction,” in Symposium on Se-
curity and Privacy. IEEE, 2009.

[55] K. J. Lang, B. A. Pearlmutter, and R. A. Price, “Results of the
abbadingo one dfa learning competition and a new evidence-
driven state merging algorithm,” in ICGI. Springer, 1998.

[56] M. J. Heule and S. Verwer, “Software model synthesis using
satisfiability solvers,” Empirical Software Engineering, 2013.

[57] C. De la Higuera, Grammatical inference: learning automata and
grammars. Cambridge University Press, 2010.

[58] R. C. Carrasco and J. Oncina, “Learning stochastic regular gram-
mars by means of a state merging method,” in ICGI. Springer,
1994.

[59] R. Parekh and V. Honavar, “Learning dfa from simple examples,”
Machine Learning, 2001.

[60] S. Verwer, R. Eyraud, and C. De La Higuera, “Pautomac: a prob-
abilistic automata and hidden markov models learning competi-
tion,” Machine learning, 2014.

[61] B. Balle, R. Eyraud, F. M. Luque, A. Quattoni, and S. Verwer, “Re-
sults of the sequence prediction challenge (spice): a competition
on learning the next symbol in a sequence,” in ICGI, 2017.

[62] Q. Lin, Y. Zhang, S. Verwer, and J. Wang, “Moha: A multi-mode
hybrid automaton model for learning car-following behaviors,”
T-ITS, 2018.

[63] A. Nadeem, S. Verwer, S. Moskal, and S. J. Yang, “Enabling visual
analytics via alert-driven attack graphs,” in CCS, 2021.

[64] A. Adadi and M. Berrada, “Peeking inside the black-box: a survey
on explainable artificial intelligence (xai),” IEEE access, 2018.

[65] RIT, “cptc dataset,” 2018, accessed: 08-Jul-2021. [Online].
Available: https://mirror.rit.edu/cptc/

[66] F. Hassanabad, “ccdc dataset,” 2019, accessed: 08-Jul-2021. [On-
line]. Available: https://github.com/FrankHassanabad/suricata-
sample-data

[67] OSIF, 2019, accessed: 08-Jul-2021. [Online]. Available:
https://suricata.readthedocs.io/en/suricata-6.0.3/

[68] E. M. Hutchins, M. J. Cloppert, R. M. Amin et al., “Intelligence-
driven computer network defense informed by analysis of ad-
versary campaigns and intrusion kill chains,” Leading Issues in
Information Warfare & Security Research, 2011.

Azqa Nadeem received her BSc degree from National University of
Science and Technology, Pakistan in 2015. She received JvEffen Excel-
lence Scholarship to pursue her MSc from Delft University of Technol-
ogy, the Netherlands. She graduated Cum laude in 2018 and received
the Best Graduate award in 2019 from the faculty of EEMCS. She is
currently a PhD candidate in the Cyber Analytics Lab at Delft Univer-
sity of Technology. Her research involves development of explainable
sequential machine learning systems for network security applications.

Sicco Verwer is currently an Associate professor at Delft University of
Technology in machine learning for cybersecurity. He is the head of the
TU Delft Cyber Analytics Lab where he works on understandable AI for
intrusion detection and software understanding. His team won several
AI challenges including ones on learning software models, automated
reverse engineering, and adversarial machine learning. He received
many grants and awards for his research including prestigious VENI and
VIDI grants from NWO, and a test-of-time award from ECMLPKDD for
his pioneering work on discrimination-free classification.

Stephen Moskal is currently a Ph.D. of Engineering student at
Rochester Institute of Technology (RIT). He has received his B.S.
and M.S. degrees in Computer Engineering at RIT in 2016. His cur-
rent research focuses on the simulation and modeling of cyber-attack
scenarios and behaviors along with the application of deep machine
learning techniques to cyber security. He has developed concepts such
as the Attacker Behavior Model (ABM) for cyber threat simulations
and the Attack-Action Framework (AIF) to describe the intentions of a
cyber-adversary over an attack scenario. Most recently his effort has
been applying transfer learning techniques to leverage information cyber
security texts to aid in the interpretation and classification of IDS alert
descriptions to the AIF. He is expected to graduate with a Doctor of
Engineering degree in 2021.

Shanchieh (Jay) Yang (SM’15) received his MS and Ph.D. degrees
in Electrical and Computer Engineering from the University of Texas
at Austin in 1998 and 2001, respectively. He is currently a Professor
in the Department of Computer Engineering and Director of Global
Outreach for Global Cybersecurity Institute at Rochester Institute of
Technology. His research focuses on cyber attack modeling, machine
learning, and simulation to enhance cyber situational awareness and
anticipatory cyber defense. He was a NSF Trusted CI Fellow in 2019
and a NSF Trusted CI TTP Fellow in 2020. He was recognized in 2019
with IEEE Region 1 Outstanding Teaching in an IEEE Area of Interest
Award – for outstanding leadership and contributions to cybersecurity
and computer engineering education.

APPENDIX A

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 16

TABLE 7: Attack stages from Moskal et al. and their severity.

Acronym Micro attack stage Severity
surf Surfing Low
hostD Host Discovery Low
SerD Service Discovery Low
vulnD Vulnerability Discovery Low
infoD Information Discovery Low
uPrivEsc User Privilege Escalation Med
rPrivEsc Root Privilege escalation Med
bfCred Brute force Credentials Med
acctManip Account Manipulation Med
PAexp Public Application Exploitation Med
remoteexp Remote Service Exploitation Med
CnC Command and Control Med
lateral Lateral movement Med
ACE Arbitrary code execution Med
privEsc Privilege escalation Med
netDOS Network Denial of Service High
resHJ Resource hijacking High
dManip Data manipulation High
exfil Data exfiltration High
delivery Data delivery High
dDestruct Data destruction High

TABLE 8: Service to)ℎ4<4() mapping acc. to functionality.

Category/Theme Services
http(s) ’http’, ’https’, ’ddi-udp-1’, ’radan-http’
wireless ’wap-wsp’
voip ’sip’, ’sips’
browser ’vrml-multi-use’
searchEng ’search-agent’
broadcast ’ssdp’, ’snmp’, ’commplex-main’, ’icmpd’, ’wsdapi’
nameserver ’domain’, ’netbios-ns’, ’menandmice-dns’

remoteAccess

’ssh’, ’rfb’, ’us-cli’, ’ahsp’, ’spt-automation’, ’asf-rmcp’,
’xdmcp’, ’pcanywherestat’, ’esmagent’, ’irdmi’,
’epmap’, ’wsman’, ’icslap’,’ms-wbt-server’, ’sunrpc’
’appiq-mgmt’, ’mosaicsyssvc1’

surveillance ’remoteware-cl’, ’ads-c’, ’syslog’, ’websm’, ’distinct’
hostingServer ’cslistener’, ’etlservicemgr’, ’web2host’
printService ’pharos’, ’ipps’
email ’smtp’, ’imaps’, ’pop3’, ’imap’, ’pop3s’, ’submission
authentication ’kerberos’, ’nv-video’
ATCcomm ’cpdlc’, ’fis’

storage ’http-alt’, ’ncube-lm’, ’postgresql’, ’mysql’, ’cm’,
’ms-sql-s’, ’ms-sql-m’

dataSharing ’ftp’, ’pcsync-https’, ’ndmp’, ’netbios-ssn’,
’microsoft-ds’, ’profinet-rt’, ’instantia’

clocksync ’ntp’
unassigned ’unknown’, ’Unknown’

Fig. 15: S-PDFA model for nine teams of CPTC-2017

Fig. 16: S-PDFA model for CCDC-2018

