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Software testing

vs.

Security testing
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Security testing

“Intended to reveal weaknesses in the 

security principles of a software” 

Assumption of an “active adversary” 

with an intent to inflict harm

https://devopedia.org/information-security-principles

https://devopedia.org/information-security-principles
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“Bug” as a security vulnerability 

https://nl.wikipedia.org/wiki/Heartbleed

Heartbleed vulnerability

https://nl.wikipedia.org/wiki/Heartbleed
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“Feature” as a security vulnerability 

Cross-site Request Forgery (CSRF)

https://securitysouls.com/a-tale-of-cross-site-request-forgery-csrf/

https://securitysouls.com/a-tale-of-cross-site-request-forgery-csrf/
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Security vulnerabilities

• May be a software bug

• May be non-functional

• May exploit non-buggy code

• May not be directly present in your codebase

• May hit time-tested code!

https://devopedia.org/information-security-principles

https://devopedia.org/information-security-principles
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… Java is safe, right?
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Understanding Java vulnerabilities

• Java Virtual Machine → Native C code

– Alternate ways to achieve memory corruption

JRE Android

https://www.cvedetails.com/product/19117/Oracle-JRE.html?vendor_id=93
https://www.cvedetails.com/product/19997/Google-Android.html?vendor_id=1224

https://www.cvedetails.com/product/19117/Oracle-JRE.html?vendor_id=93
https://www.cvedetails.com/product/19997/Google-Android.html?vendor_id=1224
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Some Examples
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What’s wrong?
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Code Injection vulnerability [1/2]

• Execute code in unauthorized applications

• Update Attack (via Dynamic Class Loading)
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Code Injection vulnerability [1/2]

• Execute code in unauthorized applications

• Update Attack (via Dynamic Class Loading)

• Tricky to fix

– Disallow untrusted plugins

– Disallow remote calls to untrusted servers

– Limit access rights 
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Remote Code Execution [2/2]

• Execute arbitrary code on a remote device

• Achieved via

– Out-of-bounds writes

– Injection attacks

– Deserialization attacks

https://www.cvedetails.com/cve/CVE-2021-44228/

Stack

https://www.cvedetails.com/cve/CVE-2021-44228/
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Remote Code Execution [2/2]

https://www.cvedetails.com/cve/CVE-2021-44228/
https://youtu.be/uyq8yxWO1ls

https://www.cvedetails.com/cve/CVE-2021-44228/
https://youtu.be/uyq8yxWO1ls
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Remote Code Execution [2/2]

• Execute arbitrary code on a remote device

• Achieved via

– Injection attacks

– Deserialization attacks

– Out-of-bounds writes

• Fixes (Log4J)

– Set trustURLCodebase flags to False

– Update to latest version

– Patch class directly

https://www.cvedetails.com/cve/CVE-2021-44228/

https://www.cvedetails.com/cve/CVE-2021-44228/
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https://www.waratek.com/alert-oracle-guidance-cpu-april-2018/

https://www.waratek.com/alert-oracle-guidance-cpu-april-2018/
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The state of security

Attack surface

Exploit

Security testing goals:

– Limit exposure

– Increase exploitation difficulty

Who’s job is to test for security?
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When to test for security?

https://www.dignitasdigital.com/blog/easy-way-to-understand-sdlc/
https://www.javatpoint.com/security-testing

Security requirements,
Risk assessment

Threat modelling 
& Abuse cases

Design for security, 
Testing plan

Secure implementation,
White-box testing

Code reviews, Black-box testing 
& Vulnerability scanning

Impact analysis, 
Patching & Updating

SECURE

“With great power comes great responsibility”

- Peter Parker principle

https://www.dignitasdigital.com/blog/easy-way-to-understand-sdlc/
https://www.javatpoint.com/security-testing
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Quality Assessment Criteria

• Soundness

– No missed vulnerability (0 FNs)

– No alarm → no vulnerability exists

• Completeness 

– No false alarms (0 FPs)

– Raises an alarm → vulnerability found

No alarm Alarm!

Safe TN FP

Unsafe! FN TP
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Quality Assessment Criteria

• Soundness

– No missed vulnerability (0 FNs)

– No alarm → no vulnerability exists

• Completeness 

– No false alarms (0 FPs)

– Raises an alarm → vulnerability found

• Ideally: ↑Soundness + ↑Completeness 

• Reality: Compromise on FPs or FNs
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Usable Security Testing Tools

• ↓ FPs vs. ↓ FNs

• ↑ Interpretability

• ↑ Generalizability
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Facets of Security Testing

• Static vs. dynamic testing? 

• White-box vs. Black-box? 
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1. Code analysis 

2. Structural analysis

Static Application Security Testing
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Code analysis

• Looks for pre-defined patterns in a codebase 

• Regular expressions

– Misconfigurations (port 22)

– Bad imports (System.io.*)

– Call to dangerous functions (strcpy, memcpy)

• Abstract Syntax Trees

– Format string attack

Error: Missing param!

func

x

printf=

Hello World!x
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Structural analysis

• Looks at control and data flows of a codebase

• Control Flow Graphs 

– Access rights violations (Privilege escalation)

– Code-reuse detection (malware variant detection)

• Data Flow Analysis

– (Simple) code injection (Sanitization issues) 

– Use-after-free vulnerability (Memory corruption)

Sun, Xin, et al. "Detecting code reuse in android applications using component-based control flow graph." IFIP international information 
security conference. Springer, Berlin, Heidelberg, 2014.
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1. Code analysis 

Regular expressions

Abstract Syntax Trees

2. Structural analysis

Control flow graphs

Data flow graphs

Static Application Security Testing

Signature-based!

Denial of Service?? Crashes??
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1. Taint analysis

2. Reverse engineering

3. Fuzzing 

4. Penetration testing

Dynamic Application Security Testing
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Taint analysis

• Tracks data in memory and its propagation in an application

• Dynamic version of Data Flow Analysis

• Contact tracing for data

• Code instrumentation (white-box!)

• Panorama: Looks for hooks into OS functions

Yin, Heng, et al. "Panorama: capturing system-wide information flow for malware detection and analysis." Proceedings of the 14th ACM 
conference on Computer and communications security. 2007
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Reverse engineering

• Attempts to reveal the internal structure of an application

• Black-box → white-box

• Behavioral analysis via input/output mapping

– Modeling application behavior

– Forensic log analysis
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Penetration testing

• Attempts to breach the application security like an adversary would

– a.k.a Ethical hacking

• Most popular testing technique! 

• Generally black-box

• Penetration Testing Execution Standard

https://www.wallarm.com/what/what-is-penetration-testing

https://www.wallarm.com/what/what-is-penetration-testing
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Fuzzing

• Discovers vulnerabilities by providing garbage inputs to an application

• Fully black-box!

• Discovers zero-day exploits

• Stagefright: overflow in MMS module
– Remote code execution

– Privilege escalation

• No crash, no detection!

https://en.wikipedia.org/wiki/Stagefright_(bug)

https://en.wikipedia.org/wiki/Stagefright_(bug)
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1. Taint analysis

2. Reverse engineering

3. Fuzzing 

4. Penetration testing

Dynamic Application Security Testing

(Mostly) signature-free!

Typically slower than SAST
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Summary

• Security testing assumes adversaries

• Secure-SDLC incorporates security at each phase
– Perfect security testing is impossible

• Code analysis finds limited, but easy-to-find vulnerabilities

• Fuzzing helpful for finding zero-days without human intervention

• Reverse engineering useful for forensic analysis

• SAST might be fast, but DAST is a better choice for security testing in general!
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That’s all for today!
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SAST vs. DAST Performance

SAST

• ↑ False positives

• ↑ False negatives

• ↑ White-box

• ↑ Speed

• ↓ Generalizability

DAST

• ↓ False positives

• ↓ False negatives

• ↓ ↑ White-box

• ↓ Speed

• ↑ Generalizability


