
1

Security Testing

Azqa Nadeem
PhD candidate @ Cyber Analytics Lab

Department of Intelligent Systems
Delft University of Technology

azqa.nadeem@tudelft.nl

The Cyber Security lecture series 



2

Software testing

vs.

Security testing



3

Security testing

“Intended to reveal weaknesses in the 

security principles of a software” 

Assumption of an “active adversary” 

with an intent to inflict harm

https://devopedia.org/information-security-principles

https://devopedia.org/information-security-principles


4

“Bug” as a security vulnerability 

https://nl.wikipedia.org/wiki/Heartbleed

Heartbleed vulnerability

https://nl.wikipedia.org/wiki/Heartbleed


5

“Feature” as a security vulnerability 

Cross-site Request Forgery (CSRF)

https://securitysouls.com/a-tale-of-cross-site-request-forgery-csrf/

https://securitysouls.com/a-tale-of-cross-site-request-forgery-csrf/


6

Security vulnerabilities

• May be a software bug

• May be non-functional

• May exploit non-buggy code

• May not be directly present in your codebase

• May hit time-tested code!

https://devopedia.org/information-security-principles

https://devopedia.org/information-security-principles


7

… Java is safe, right?



8

Understanding Java vulnerabilities

• Java Virtual Machine → Native C code

– Alternate ways to achieve memory corruption

JRE Android

https://www.cvedetails.com/product/19117/Oracle-JRE.html?vendor_id=93
https://www.cvedetails.com/product/19997/Google-Android.html?vendor_id=1224

https://www.cvedetails.com/product/19117/Oracle-JRE.html?vendor_id=93
https://www.cvedetails.com/product/19997/Google-Android.html?vendor_id=1224


9

Some Examples



10

What’s wrong?



11

Code Injection vulnerability [1/2]

• Execute code in unauthorized applications

• Update Attack (via Dynamic Class Loading)



12

Code Injection vulnerability [1/2]

• Execute code in unauthorized applications

• Update Attack (via Dynamic Class Loading)

• Tricky to fix

– Disallow untrusted plugins

– Disallow remote calls to untrusted servers

– Limit access rights 



13

Remote Code Execution [2/2]

• Execute arbitrary code on a remote device

• Achieved via

– Out-of-bounds writes

– Injection attacks

– Deserialization attacks

https://www.cvedetails.com/cve/CVE-2021-44228/

Stack

https://www.cvedetails.com/cve/CVE-2021-44228/


14

Remote Code Execution [2/2]

https://www.cvedetails.com/cve/CVE-2021-44228/
https://youtu.be/uyq8yxWO1ls

https://www.cvedetails.com/cve/CVE-2021-44228/
https://youtu.be/uyq8yxWO1ls


15

Remote Code Execution [2/2]

• Execute arbitrary code on a remote device

• Achieved via

– Injection attacks

– Deserialization attacks

– Out-of-bounds writes

• Fixes (Log4J)

– Set trustURLCodebase flags to False

– Update to latest version

– Patch class directly

https://www.cvedetails.com/cve/CVE-2021-44228/

https://www.cvedetails.com/cve/CVE-2021-44228/


16
https://www.waratek.com/alert-oracle-guidance-cpu-april-2018/

https://www.waratek.com/alert-oracle-guidance-cpu-april-2018/


17

The state of security

Attack surface

Exploit

Security testing goals:

– Limit exposure

– Increase exploitation difficulty

Who’s job is to test for security?



18

When to test for security?

https://www.dignitasdigital.com/blog/easy-way-to-understand-sdlc/
https://www.javatpoint.com/security-testing

Security requirements,
Risk assessment

Threat modelling 
& Abuse cases

Design for security, 
Testing plan

Secure implementation,
White-box testing

Code reviews, Black-box testing 
& Vulnerability scanning

Impact analysis, 
Patching & Updating

SECURE

“With great power comes great responsibility”

- Peter Parker principle

https://www.dignitasdigital.com/blog/easy-way-to-understand-sdlc/
https://www.javatpoint.com/security-testing


19

Quality Assessment Criteria

• Soundness

– No missed vulnerability (0 FNs)

– No alarm → no vulnerability exists

• Completeness 

– No false alarms (0 FPs)

– Raises an alarm → vulnerability found

No alarm Alarm!

Safe TN FP

Unsafe! FN TP



20

Quality Assessment Criteria

• Soundness

– No missed vulnerability (0 FNs)

– No alarm → no vulnerability exists

• Completeness 

– No false alarms (0 FPs)

– Raises an alarm → vulnerability found

• Ideally: ↑Soundness + ↑Completeness 

• Reality: Compromise on FPs or FNs



21

Usable Security Testing Tools

• ↓ FPs vs. ↓ FNs

• ↑ Interpretability

• ↑ Generalizability



22

Facets of Security Testing

• Static vs. dynamic testing? 

• White-box vs. Black-box? 



23

1. Code analysis 

2. Structural analysis

Static Application Security Testing



24

Code analysis

• Looks for pre-defined patterns in a codebase 

• Regular expressions

– Misconfigurations (port 22)

– Bad imports (System.io.*)

– Call to dangerous functions (strcpy, memcpy)

• Abstract Syntax Trees

– Format string attack

Error: Missing param!

func

x

printf=

Hello World!x



25

Structural analysis

• Looks at control and data flows of a codebase

• Control Flow Graphs 

– Access rights violations (Privilege escalation)

– Code-reuse detection (malware variant detection)

• Data Flow Analysis

– (Simple) code injection (Sanitization issues) 

– Use-after-free vulnerability (Memory corruption)

Sun, Xin, et al. "Detecting code reuse in android applications using component-based control flow graph." IFIP international information 
security conference. Springer, Berlin, Heidelberg, 2014.



26

1. Code analysis 

Regular expressions

Abstract Syntax Trees

2. Structural analysis

Control flow graphs

Data flow graphs

Static Application Security Testing

Signature-based!

Denial of Service?? Crashes??



27

1. Taint analysis

2. Reverse engineering

3. Fuzzing 

4. Penetration testing

Dynamic Application Security Testing



28

Taint analysis

• Tracks data in memory and its propagation in an application

• Dynamic version of Data Flow Analysis

• Contact tracing for data

• Code instrumentation (white-box!)

• Panorama: Looks for hooks into OS functions

Yin, Heng, et al. "Panorama: capturing system-wide information flow for malware detection and analysis." Proceedings of the 14th ACM 
conference on Computer and communications security. 2007



29

Reverse engineering

• Attempts to reveal the internal structure of an application

• Black-box → white-box

• Behavioral analysis via input/output mapping

– Modeling application behavior

– Forensic log analysis



30

Penetration testing

• Attempts to breach the application security like an adversary would

– a.k.a Ethical hacking

• Most popular testing technique! 

• Generally black-box

• Penetration Testing Execution Standard

https://www.wallarm.com/what/what-is-penetration-testing

https://www.wallarm.com/what/what-is-penetration-testing


31

Fuzzing

• Discovers vulnerabilities by providing garbage inputs to an application

• Fully black-box!

• Discovers zero-day exploits

• Stagefright: overflow in MMS module
– Remote code execution

– Privilege escalation

• No crash, no detection!

https://en.wikipedia.org/wiki/Stagefright_(bug)

https://en.wikipedia.org/wiki/Stagefright_(bug)


32

1. Taint analysis

2. Reverse engineering

3. Fuzzing 

4. Penetration testing

Dynamic Application Security Testing

(Mostly) signature-free!

Typically slower than SAST



33

Summary

• Security testing assumes adversaries

• Secure-SDLC incorporates security at each phase
– Perfect security testing is impossible

• Code analysis finds limited, but easy-to-find vulnerabilities

• Fuzzing helpful for finding zero-days without human intervention

• Reverse engineering useful for forensic analysis

• SAST might be fast, but DAST is a better choice for security testing in general!



34

That’s all for today!



35

SAST vs. DAST Performance

SAST

• ↑ False positives

• ↑ False negatives

• ↑ White-box

• ↑ Speed

• ↓ Generalizability

DAST

• ↓ False positives

• ↓ False negatives

• ↓ ↑ White-box

• ↓ Speed

• ↑ Generalizability


