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Why explainability?

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
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White-box vs Black-box classifiers

• A white-box classifier is transparent in terms of the function it represents, and can thus be 

understood by human experts.

• A black-box classifier often aims for optimal performance at the cost of interpretability, i.e., 

they represent a function that is difficult for human experts to understand. 

• A (relatively) simple test: given inputs and outputs, can a human 
interpret the relationship between them? 
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Are these white-box or black-box? 

• Decision tree 

• Random forest

• K-nearest neighbors

• Neural networks

• Support vector machine

https://scikit-learn.org/stable/modules/tree.html
https://www.tibco.com/reference-center/what-is-a-random-forest
https://www.jcchouinard.com/k-nearest-neighbors/
https://www.tibco.com/reference-center/what-is-a-neural-network
https://www.javatpoint.com/machine-learning-support-vector-machine-algorithm

https://scikit-learn.org/stable/modules/tree.html
https://www.tibco.com/reference-center/what-is-a-random-forest
https://www.javatpoint.com/machine-learning-support-vector-machine-algorithm
https://www.javatpoint.com/machine-learning-support-vector-machine-algorithm
https://www.javatpoint.com/machine-learning-support-vector-machine-algorithm
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Explainable Artificial Intelligence (XAI)

• “XAI provides a set of tools and techniques that aim to make machine learning models 

human understandable by explaining either the model predictions and/or the input data.”

• Interpretable vs. explainable
– White-box model vs. explaining an ML model

• Model-based vs. model-free
– Whether the explanation method works 

with a specific model

• Local vs. global explanations
– Explaining a single vs. all data instances

Nadeem, Azqa, et al. "Sok: Explainable machine learning for computer security applications." arXiv preprint arXiv:2208.10605 (2022).
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What is an explanation? (…in AI)

Miller, Tim. "Explanation in artificial intelligence: Insights from the social sciences." Artificial intelligence 267 (2019): 1-38.

Explanation contains a causal chain and explanation selection. 

An explainee cares only about a subset of causes w.r.t. their context. 

From those, the explainer may select a few causes, and the explainer 

and explainee may interact about them.

Although, explanations are often restricted to causal attribution in AI…
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Properties of good explanations

• Explanations are selected (from many causes)
– Select a few (biased) causes from an exhaustive list 

• Explanations are social
– Transfer of knowledge; tailored to explainers’ beliefs about explainee’s beliefs

• Explanations are contrastive
– Why e happened? vs. Why e happened instead of x?

• Referring to causes is more effective than probabilities
– The most likely explanation is not necessarily the best one for the explainee

Miller, Tim. "Explanation in artificial intelligence: Insights from the social sciences." Artificial intelligence 267 (2019): 1-38.
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Properties of good explanations

• Explanations are selected (from many causes)
– Select a few (biased) causes from an exhaustive list 

• Explanations are social
– Transfer of knowledge; tailored to explainers’ beliefs about explainee’s beliefs

• Explanations are contrastive
– Why e happened? vs. Why e happened instead of x?

• Referring to causes is more effective than probabilities
– The most likely explanation is not necessarily the best one for the explainee

Miller, Tim. "Explanation in artificial intelligence: Insights from the social sciences." Artificial intelligence 267 (2019): 1-38.

Good explanations are ones that an explainee will actually use. User 

studies are an important part of evaluating the usefulness of 

explanations! 
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How to explain ML models?
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Dataset used in this lecture…

• Cervical cancer (risk factors) prediction dataset, UCI ML repo

• 858 rows,  35 features, 1 target label (healthy/cancer)

• Base model: Decision tree (White-box), Random Forest (Black-box)

https://archive.ics.uci.edu/ml/datasets/Cervical+cancer+%28Risk+Factors%29



15

Decision tree [Local/Global] [Interpretable] [Model-based]

Test instance

age 33

contra_years 0.16

num_stds 1

smokes False

• Explains the dataset globally, and explains single instances by tracing a tree path 
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Decision tree - Analysis

• Creates local and global explanations

• Can validate the model directly

• May not be the most accurate model for the task
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Permutation Importance [Global] [Post-hoc] [Model-agnostic]

• Explains the impact of permuting a feature on the classifier loss, breaking the relationship 

between the feature and true outcome
– High loss discrepancy → important feature

– Low loss discrepancy → unimportant feature

• Repeat multiple times and average out the loss discrepancy

Age contra_years num_std smokes Label

18 0.25 0 0 0

37 0.5 0 0 0

19 0 2 0 1

Loss = 0.11

37

19

18

Lossage = 0.29

Δ loss = 2.6

Age

Lossstd = 0.19

Δ loss = 1.7

Num_std
2

0

0
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Permutation Importance

• Explains the impact of permuting a feature on the classifier loss, breaking the relationship 

between the feature and true outcome
– High loss discrepancy → important feature

– Low loss discrepancy → unimportant feature

• Repeat multiple times and average out the loss discrepancy

• Compute on test data!

Evidence of overfitting!
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Permutation Importance - Analysis

• Detect features that hurt the generalizability of the model

• Can be used to explain any black-box model

• Directly linked to the loss of a model
– Not necessarily marginal contribution of a feature for a given prediction

• Tricky interpretation with correlated features
– Loss discrepancy include main feature effect & interaction effects

– Generates impossible data instances while permutation

– Underestimates importance of correlated features 
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LIME [Local] [Post-hoc] [Model-agnostic]

• Explains a prediction by learning a local surrogate model for the data instance
– Approximates the predictions of the black-box model in a local neighborhood

• Input instance perturbed for each feature by sampling from a normal distribution
– Distribution defined by input feature values

• Closer instances influence the surrogate more than farther instances

Random 
Forest 

33, 0.16, 1, 0 Healthy

Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "" Why should i trust you?" Explaining the predictions of any classifier." Proceedings of 
the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016.
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LIME [Local] [Post-hoc] [Model-agnostic]

• Explains a prediction by learning a local surrogate model for the data instance
– Approximates the predictions of the black-box model in a local neighborhood

• Input instance perturbed for each feature by sampling from a normal distribution
– Distribution defined by input feature values

• Closer instances influence the surrogate more than farther instances

Random 
Forest 

33, 0.16, 1, 0 Healthy

Healthy

35, 0, 1, 0

33, 0.16, 1, 1

33, 0.16, 0, 1

30, 0.1, 3, 1

Cancer

Healthy

Healthy

Linear 
regression(35, 0.0, 1, 0), H

(30, 0.1, 3, 1), H

(33, 0.16, 1, 1), C

(33, 0.16, 0, 1), H

(33, 0.16, 1, 0), H

Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "" Why should i trust you?" Explaining the predictions of any classifier." Proceedings of 
the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016.
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LIME

Linear 
regression

RF prediction 

probabilities

Features used 

in explanation 

generation

Surrogate weight * 

feature value

Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "" Why should i trust you?" Explaining the predictions of any classifier." Proceedings of 
the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016.

(30, 0.1, 3, 1), H

(35, 0.0, 1, 0), H

(33, 0.16, 1, 1), C

(33, 0.16, 0, 1), H

(33, 0.16, 1, 0), H
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LIME - Analysis

• Free choice of local interpretable model

• Limit the features used for explanation generation

• Unclear from the explanations how far one can extrapolate from the predictions
– How big should the local neighborhood be?

– Changes the explanations dramatically

• Explanations may change for different sampling runs
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Counterfactual [Local] [Post-hoc] [Model-agnostic]

• Explains the minimal feature change(s) that alter the prediction for an instance
– Similar to the original instance

– Change minimal features possible

– Changes to feature values must be realistic

• Has a causal form: “If X had not happened, Y would also not have happened”
– E.g., “The shop is closed either because it is raining or the owner is sick.”

– Counterfactual: “The shop is open because it is raining and the owner is healthy.” 

Age contra_years num_std smokes Label

20 0.25 0 0 0

25 0.25 1 0 1

20 2 4 0 1

CF#1

CF#2
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Counterfactual - Analysis

• Natural interpretation of counterfactual explanations
– Report only what has changed

• Creates new (artificial) data instances as explanations 

• Expensive to create counterfactuals that fulfill all constraints

• Rashomon effect: Multiple contradictory counterfactual explanations can exist
– Which one to report?
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Recap

Decision tree

Permutation 

importance

Counterfactuals

LIME

Interpretable

Model-based

Global/local

Post-hoc 

(feature summary)

Model-agnostic

Global

Post-hoc 

(example-based)

Post-hoc (surrogate)

Model-agnostic

Local

Model-agnostic

Local
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Examples: XAI in cybersecurity 
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Debugging a malicious network traffic detector 

• Gradient Boosting Machine learnt on Netflow data
– Tabular features: start time, duration, protocol, source port, …

– Binary classification task: Normal | Botnet

– Balanced accuracy: 86.4% 

• Q1. Does the model use the correct features?
– Interpretable decision tree shows problematic features

– Solution: retrain without spurious features for 

better generalizability

• Balance accuracy drops to 74.4%

Nadeem, Azqa, et al. "Sok: Explainable machine learning for computer security applications." arXiv preprint arXiv:2208.10605 (2022).
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Debugging a malicious network traffic detector 

• Gradient Boosting Machine learnt on Netflow data
– Tabular features: start time, duration, protocol, source port, …

– Binary classification task: Normal | Botnet

– Balanced accuracy: 86.4% 

• Q2. Where does the GBM make mistakes?
– LIME shows a false negative (missed malicious flow)

– dport suggests Netflow is benign 

– Solution: Fix the experimental dataset or learn from

a more realistic dataset

Nadeem, Azqa, et al. "Sok: Explainable machine learning for computer security applications." arXiv preprint arXiv:2208.10605 (2022).
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Extracting attacker strategies from intrusion alerts

Nadeem, Azqa, et al. "Alert-driven attack graph generation using s-pdfa." IEEE Transactions on Dependable and Secure Computing 19.2 (2021): 
731-746.

• Security analysts are overloaded with intrusion alert investigation

• Q3. What can we learn about attacker strategies by analyzing alerts?
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Summary

• XAI aims to explain the black-box model predictions or input data
– For usability, verification and establishing trust

• Good explanations are
– Contrastive, selected, social, and tailored to the explainee

• A few explanation methods for tabular data
– Decision tree for interpretable ML 

– Permutation Importance for feature summary

– LIME for local linear surrogate model

– Counterfactuals for nearest-unlike explanations

• XAI can detect spurious features, discover reasons for misclassifications, 

and explain input data in human understandable way
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Further reading

• Miller, Tim. "Explanation in artificial intelligence: Insights from the social sciences." Artificial 

intelligence 267 (2019): 1-38.

• Doshi-Velez, Finale, and Been Kim. "Towards a rigorous science of interpretable machine 

learning." arXiv preprint arXiv:1702.08608 (2017).

• Molnar, Christoph. Interpretable machine learning. Lulu. com, 2020.

• Nadeem, Azqa, et al. "Sok: Explainable machine learning for computer security 

applications." arXiv preprint arXiv:2208.10605 (2022).
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Questions?


