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> whoami

• Originally from Pakistan

• 3rd year PhD candidate

– Sequential ML for network security 

• Security lecturer

• Landscape photographer
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Current state of security

https://portswigger.net/daily-swig/

Machine learning can help!
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Machine learning
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Output

• Learn patterns from input data

• Under the hood: Optimize an objective function
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Machine learning

Feature selection ModelRaw input Output

• Learn patterns from input data

• Under the hood: Optimize an objective function
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ML for defensive cybersecurity

• Spam detection

• Malware detection

• Detect and patch buggy code

• Detect real-time attacks

• Profile attacker behavior

• Anomaly detection

• Attacker modelling
– APT modelling

• …

• Offensive security applications
– Crafting malware, hardware attacks, …

Azqa Nadeem
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ML for defensive cybersecurity

• Detect and patch buggy code

Tufano, Michele, et al. "An empirical study on learning bug-fixing patches in the wild via neural machine translation." ACM 

Transactions on Software Engineering and Methodology (TOSEM) 28.4, 2019.
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ML for defensive cybersecurity

• Anomaly detection

Lin, Qin, et al. "TABOR: A graphical model-based approach for anomaly detection in industrial control systems." Proceedings 

of the 2018 on Asia Conference on Computer and Communications Security. 2018.

https://towardsdatascience.com/generating-critical-scenarios-using-anomaly-detection-f25e67e0553b
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ML for defensive cybersecurity

• Malware detection → Predicting impending exposure

Sharif, Mahmood, et al. "Predicting impending exposure to malicious content from user behavior." Proceedings of the 2018 

ACM SIGSAC Conference on Computer and Communications Security. 2018.

Time →
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ML for defensive cybersecurity

• Malware detection → Capability assessment

Nadeem, Azqa, et al. "Beyond Labeling: Using Clustering to Build Network Behavioral Profiles of Malware Families." Malware 
Analysis Using Artificial Intelligence and Deep Learning. Springer, Cham, 2021.

ZeuSvs.

- Connects with C&C
- Opens backdoors
- Persistent

Behavior profile                                Label
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ML for defensive cybersecurity

• Malware detection → Adversarial ML

Verwer, Sicco, et al. "The Robust Malware Detection Challenge and Greedy Random Accelerated Multi-Bit 

Search." Proceedings of the 13th ACM Workshop on Artificial Intelligence and Security. 2020.
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ML for defensive cybersecurity

• Malware detection → Author attribution

Murenin, Ivan, et al. "Explaining Android Application Authorship Attribution Based on Source Code Analysis." Internet of 
Things, Smart Spaces, and Next Generation Networks and Systems. Springer, Cham, 2020.
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Attack surface

Exploit

• Divide between academia & industry

• ML’s slow adaptation

– Traditional vs. ML-based analysis

Industry perspective

Azqa Nadeem
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ML is not a silver bullet

• Cannot blindly apply ML to Security

– Address unique problems

• Do not throw data in black-box

– Ethical considerations

Azqa Nadeem
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(Caution!) More goodware than malware [1/4]

• Security data has class imbalance

• Unrealistic class distribution

– Bias in data → bias in models

• Use real class distribution

• Use imbalance-aware algorithms

Azqa Nadeem
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(Caution!) Landscape is adversarial [2/4]

• Attackers hide, malware evades detection

• ML cannot detect all evasion attempts!

• Representative dataset is required!

• ML can adapt to changing landscape

– Trigger re-learning

Azqa Nadeem

Detected!

Undetected!
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(Caution!) Know what to evaluate [3/4]

• Be mindful of evaluation metrics

– Precision, Recall, AUC, F1 score … 

– Accuracy in imbalanced datasets

• Performance metrics ≠ improved security

• Better understanding fosters better models

– Prediction vs. understandability

Azqa Nadeem
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(Caution!) Know the limitations of ML [4/4]

• Can find patterns faster than humans

– But is also really stupid 

• Cannot replace human intelligence

– Trade-off between automation and explainability

• Build human-in-the-loop ML pipelines

https://hackernoon.com/human-intelligence-or-artificial-intelligence-we-need-both-if7w32b2
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Take-aways

• ML enables human analysts to do complex tasks

– A powerful technology for defensive security

– But cannot blindly apply it

• ML used for both defense and offense

– Performance metrics ≠ security

– Robust classifiers required

• ML is not a silver bullet for all security problems

– Explainable and Human-in-the-loop ML is paramount

Azqa Nadeem
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Thank you!
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