Machine Learning for Defensive Cybersecurity

Azqa Nadeem

PhD candidate Cyber Analytics Lab

DSC Delft

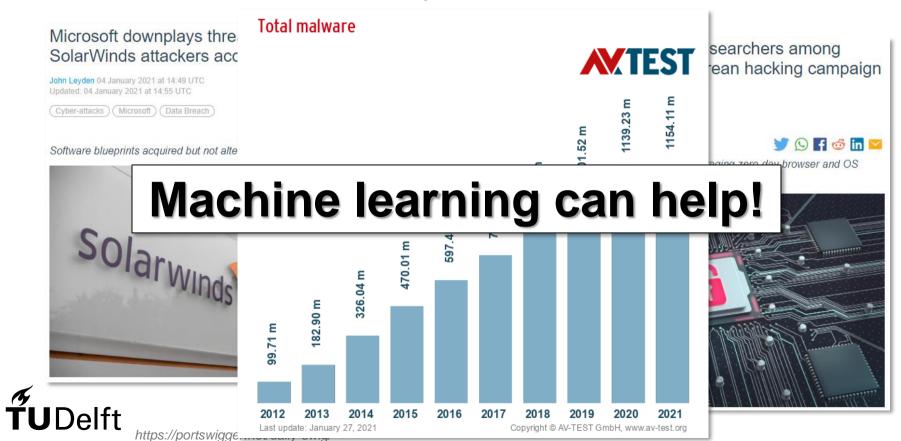
> whoami

- Originally from Pakistan
- 3rd year PhD candidate
 - Sequential ML for network security
- Security lecturer
- Landscape photographer

Lab

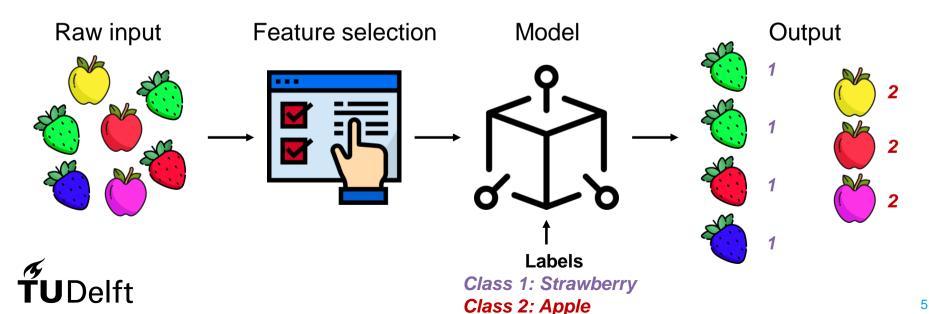
> whoami

Current state of security



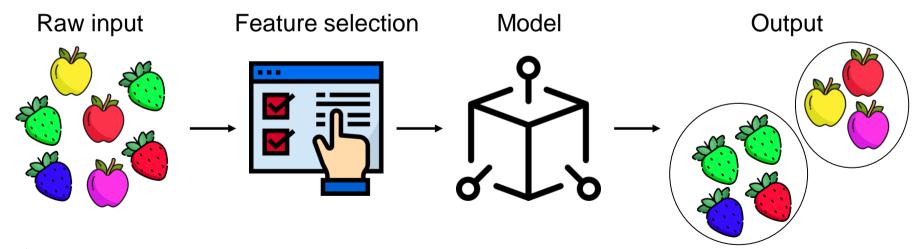
Machine learning

- Learn patterns from input data
- Under the hood: Optimize an objective function



Machine learning

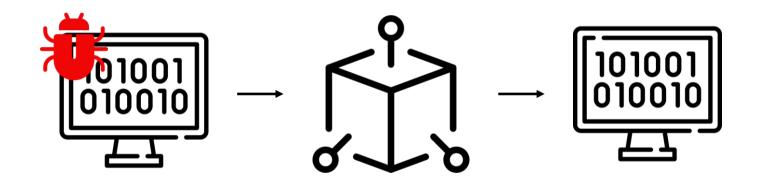
- Learn patterns from input data
- Under the hood: Optimize an objective function



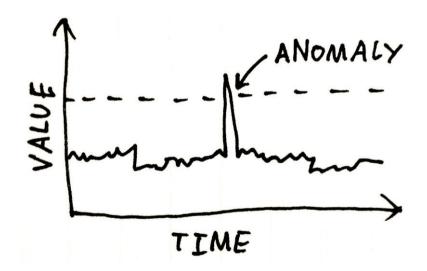
- Spam detection
- Malware detection
- Detect and patch buggy code
- Detect real-time attacks
- Profile attacker behavior
- Anomaly detection
- Attacker modelling
 - APT modelling
- •
- Offensive security applications
 - Crafting malware, hardware attacks, ...

TUDelf

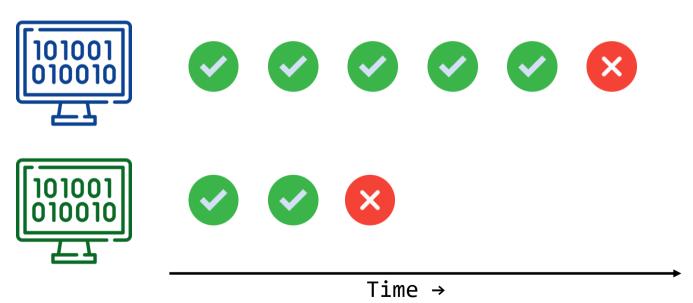
Detect and patch buggy code



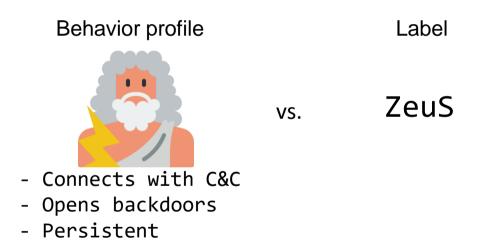
Anomaly detection



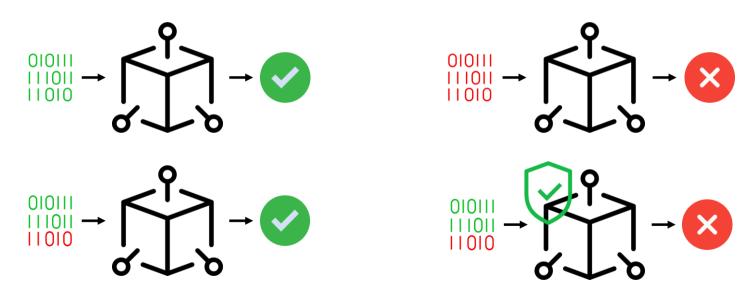
Malware detection → Predicting impending exposure



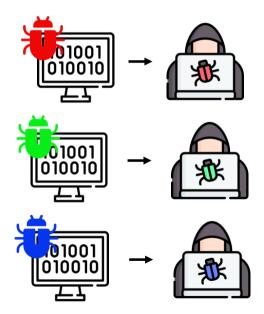
Malware detection → Capability assessment



Malware detection → Adversarial ML



Malware detection → Author attribution



Industry perspective

- Divide between academia & industry
- ML's slow adaptation
 - Traditional vs. ML-based analysis

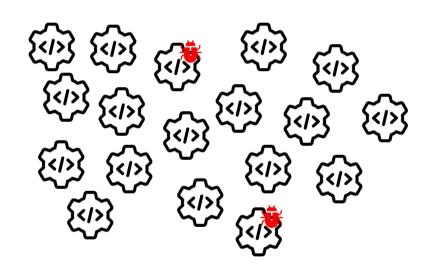
Attack surface

ML is not a silver bullet

- Cannot blindly apply ML to Security
 - Address unique problems
- Do not throw data in black-box
 - Ethical considerations

(Caution!) More goodware than malware [1/4]

- Security data has class imbalance
- Unrealistic class distribution
 - Bias in data → bias in models
- Use real class distribution
- Use imbalance-aware algorithms

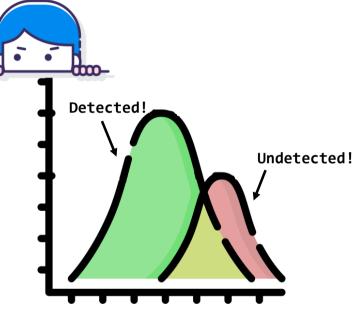


(Caution!) Landscape is adversarial [2/4]

Attackers hide, malware evades detection

ML cannot detect all evasion attempts!

- Representative dataset is required!
- ML can adapt to changing landscape
 - Trigger re-learning



(Caution!) Know what to evaluate [3/4]

- Be mindful of evaluation metrics
 - Precision, Recall, AUC, F1 score ...
 - Accuracy in imbalanced datasets

- Performance metrics ≠ improved security
- Better understanding fosters better models
 - Prediction vs. understandability

(Caution!) Know the limitations of ML [4/4]

- Can find patterns faster than humans
 - But is also really stupid
- Cannot replace human intelligence
 - Trade-off between automation and explainability
- Build human-in-the-loop ML pipelines



Take-aways

- ML enables human analysts to do complex tasks
 - A powerful technology for defensive security
 - But cannot blindly apply it
- ML used for both defense and offense
 - Performance metrics ≠ security
 - Robust classifiers required
- ML is not a silver bullet for all security problems
 - Explainable and Human-in-the-loop ML is paramount

Thank you!

