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* Originally from Pakistan t

- 3" year PhD candidate
— Sequential ML for network security

« Security lecturer

- Landscape photographer
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Current state of security
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Machine learning

- Learn patterns from input data
* Under the hood: Optimize an objective function

Raw input Feature selection Model Output
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Machine learning

- Learn patterns from input data
« Under the hood: Optimize an objective function

Raw input Feature selection Model
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ML for defensive cybersecurity

* Spam detection

*  Malware detection

- Detect and patch buggy code
* Detect real-time attacks

* Profile attacker behavior

« Anomaly detection

- Attacker modelling
— APT modelling

« Offensive security applications
— Crafting malware, hardware attacks, ...
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ML for defensive cybersecurity

- Detect and patch buggy code
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ML for defensive cybersecurity

- Anomaly detection
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ML for defensive cybersecurity

- Malware detection — Predicting impending exposure
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TU Delft Sharif, Mahmood, et al. "Predicting impending exposure to malicious content from user behavior." Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security. 2018.
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ML for defensive cybersecurity

- Malware detection — Capability assessment

Behavior profile Label

/

- Connects with C&C
- Opens backdoors
- Persistent

VS. ZeusS
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ML for defensive cybersecurity

Malware detection — Adversarial ML
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ML for defensive cybersecurity

Malware detection — Author attribution
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Industry perspective

* Divide between academia & industry

*  ML’s slow adaptation
— Traditional vs. ML-based analysis

A

" Exploit

Attack surface
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ML i1s not a silver bullet

- Cannot blindly apply ML to Security

— Address unique problems

Do not throw data in black-box
— Ethical considerations
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(Caution!) More goodware than malware [1/4]

- Security data has class imbalance

« Unrealistic class distribution @ @ @ @ @

— Bias in data — bias in models 2

« Use real class distribution @ @ @
« Use imbalance-aware algorithms @ @ @
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(Caution!) Landscape is adversarial [2/4]

« Attackers hide, malware evades detection

Detected!
« ML cannot detect all evasion attempts! \

Undetected!

/

- Representative dataset is required!

« ML can adapt to changing landscape
— Trigger re-learning

]
TUDelft

Azga Nadeem 17



(Caution!) Know what to evaluate [3/4]

«  Be mindful of evaluation metrics
— Precision, Recall, AUC, F1 score ...
— Accuracy in imbalanced datasets

- Performance metrics # improved security
« Better understanding fosters better models

— Prediction vs. understandability
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(Caution!) Know the limitations of ML [4/4]

- Can find patterns faster than humans
— Butis also really stupid

« Cannot replace human intelligence

— Trade-off between automation and explainability

« Build human-in-the-loop ML pipelines
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Take-aways

* ML enables human analysts to do complex tasks
— A powerful technology for defensive security
— But cannot blindly apply it

* ML used for both defense and offense
— Performance metrics # security
— Robust classifiers required

« ML is not a silver bullet for all security problems
— Explainable and Human-in-the-loop ML is paramount
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Thank you!

8 azga.nadeem@tudelft.nl O@azqa_nadeem @htt s://cyber-analytics.nl
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